/* cget01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int cget01_(integer *m, integer *n, complex *a, integer *lda, complex *afac, integer *ldafac, integer *ipiv, real *rwork, real * resid) { /* System generated locals */ integer a_dim1, a_offset, afac_dim1, afac_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2; /* Local variables */ integer i__, j, k; complex t; real eps; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), cgemv_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); real anorm; extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGET01 reconstructs a matrix A from its L*U factorization and */ /* computes the residual */ /* norm(L*U - A) / ( N * norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The original M x N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* AFAC (input/output) COMPLEX array, dimension (LDAFAC,N) */ /* The factored form of the matrix A. AFAC contains the factors */ /* L and U from the L*U factorization as computed by CGETRF. */ /* Overwritten with the reconstructed matrix, and then with the */ /* difference L*U - A. */ /* LDAFAC (input) INTEGER */ /* The leading dimension of the array AFAC. LDAFAC >= max(1,M). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from CGETRF. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESID (output) REAL */ /* norm(L*U - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if M = 0 or N = 0. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; afac_dim1 = *ldafac; afac_offset = 1 + afac_dim1; afac -= afac_offset; --ipiv; --rwork; /* Function Body */ if (*m <= 0 || *n <= 0) { *resid = 0.f; return 0; } /* Determine EPS and the norm of A. */ eps = slamch_("Epsilon"); anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); /* Compute the product L*U and overwrite AFAC with the result. */ /* A column at a time of the product is obtained, starting with */ /* column N. */ for (k = *n; k >= 1; --k) { if (k > *m) { ctrmv_("Lower", "No transpose", "Unit", m, &afac[afac_offset], ldafac, &afac[k * afac_dim1 + 1], &c__1); } else { /* Compute elements (K+1:M,K) */ i__1 = k + k * afac_dim1; t.r = afac[i__1].r, t.i = afac[i__1].i; if (k + 1 <= *m) { i__1 = *m - k; cscal_(&i__1, &t, &afac[k + 1 + k * afac_dim1], &c__1); i__1 = *m - k; i__2 = k - 1; cgemv_("No transpose", &i__1, &i__2, &c_b1, &afac[k + 1 + afac_dim1], ldafac, &afac[k * afac_dim1 + 1], &c__1, & c_b1, &afac[k + 1 + k * afac_dim1], &c__1) ; } /* Compute the (K,K) element */ i__1 = k + k * afac_dim1; i__2 = k - 1; cdotu_(&q__2, &i__2, &afac[k + afac_dim1], ldafac, &afac[k * afac_dim1 + 1], &c__1); q__1.r = t.r + q__2.r, q__1.i = t.i + q__2.i; afac[i__1].r = q__1.r, afac[i__1].i = q__1.i; /* Compute elements (1:K-1,K) */ i__1 = k - 1; ctrmv_("Lower", "No transpose", "Unit", &i__1, &afac[afac_offset], ldafac, &afac[k * afac_dim1 + 1], &c__1); } /* L10: */ } i__1 = min(*m,*n); claswp_(n, &afac[afac_offset], ldafac, &c__1, &i__1, &ipiv[1], &c_n1); /* Compute the difference L*U - A and store in AFAC. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * afac_dim1; i__4 = i__ + j * afac_dim1; i__5 = i__ + j * a_dim1; q__1.r = afac[i__4].r - a[i__5].r, q__1.i = afac[i__4].i - a[i__5] .i; afac[i__3].r = q__1.r, afac[i__3].i = q__1.i; /* L20: */ } /* L30: */ } /* Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */ *resid = clange_("1", m, n, &afac[afac_offset], ldafac, &rwork[1]); if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / (real) (*n) / anorm / eps; } return 0; /* End of CGET01 */ } /* cget01_ */