/* cdrvgbx.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "memory_alloc.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static complex c_b48 = {0.f,0.f}; static complex c_b49 = {1.f,0.f}; static integer c__6 = 6; static integer c__7 = 7; static real c_b197 = 0.f; /* Subroutine */ int cdrvgb_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, complex *a, integer *la, complex *afb, integer *lafb, complex *asav, complex *b, complex * bsav, complex *x, complex *xact, real *s, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*4] = "N" "R" "C" "B"; /* Format strings */ static char fmt_9999[] = "(\002 *** In CDRVGB, LA=\002,i5,\002 is too sm" "all for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> In" "crease LA to at least \002,i5)"; static char fmt_9998[] = "(\002 *** In CDRVGB, LAFB=\002,i5,\002 is too " "small for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> " "Increase LAFB to at least \002,i5)"; static char fmt_9997[] = "(1x,a,\002, N=\002,i5,\002, KL=\002,i5,\002, K" "U=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)" ; static char fmt_9995[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002" ",i5,\002,\002,i5,\002,\002,i5,\002,...), EQUED='\002,a1,\002', t" "ype \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002" ",i5,\002,\002,i5,\002,\002,i5,\002,...), type \002,i1,\002, test(" "\002,i1,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11[2]; real r__1, r__2; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); double c_abs(complex *); /* Local variables */ extern /* Subroutine */ int cebchvxx_(real *, char *); integer i__, j, k, n; real *errbnds_c__; integer i1, i2, k1; real *errbnds_n__; integer nb, in, kl, ku, nt, n_err_bnds__, lda, ldb, ikl, nkl, iku, nku; char fact[1]; integer ioff, mode; real amax; char path[3]; integer imat, info; real *berr; char dist[1]; real rdum[1], rpvgrw_svxx__; char type__[1]; integer nrun; extern doublereal cla_gbrpvgrw__(integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *); integer ldafb; extern /* Subroutine */ int cgbt01_(), cgbt02_(), cgbt05_(char *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); integer ifact; extern /* Subroutine */ int cget04_(integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); integer nfail, iseed[4], nfact; extern logical lsame_(char *, char *); char equed[1]; integer nbmin; real rcond, roldc; extern /* Subroutine */ int cgbsv_(integer *, integer *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer nimat; real roldi; extern doublereal sget06_(real *, real *); real anorm; integer itran; logical equil; real roldo; char trans[1]; integer izero, nerrs; logical zerot; char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *); extern doublereal clangb_(char *, integer *, integer *, integer *, complex *, integer *, real *), clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int claqgb_(integer *, integer *, integer *, integer *, complex *, integer *, real *, real *, real *, real *, real *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; real colcnd; extern doublereal clantb_(char *, char *, char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgbequ_(integer *, integer *, integer *, integer *, complex *, integer *, real *, real *, real *, real *, real *, integer *); real rcondc; extern doublereal slamch_(char *); logical nofact; extern /* Subroutine */ int cgbtrf_(integer *, integer *, integer *, integer *, complex *, integer *, integer *, integer *); integer iequed; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); real rcondi; extern /* Subroutine */ int clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *), claset_(), alasvm_( char *, integer *, integer *, integer *, integer *); real cndnum, anormi, rcondo, ainvnm; extern /* Subroutine */ int cgbtrs_(char *, integer *, integer *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *); logical trfcon; real anormo, rowcnd; extern /* Subroutine */ int cgbsvx_(char *, char *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, char *, real *, real *, complex *, integer *, complex * , integer *, real *, real *, real *, complex *, real *, integer *), xlaenv_(integer *, integer *); real anrmpv; extern /* Subroutine */ int cerrvx_(char *, integer *); real result[7], rpvgrw; extern /* Subroutine */ int cgbsvxx_(char *, char *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, char *, real *, real *, complex *, integer *, complex *, integer *, real *, real *, real *, integer *, real *, real *, integer *, real *, complex *, real *, integer *); /* Fortran I/O blocks */ static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___27 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___73 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___74 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___75 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___76 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___77 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___78 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___79 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___80 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___86 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___87 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___88 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___89 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___90 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___91 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___92 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___93 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CDRVGB tests the driver routines CGBSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX array, dimension (LA) */ /* LA (input) INTEGER */ /* The length of the array A. LA >= (2*NMAX-1)*NMAX */ /* where NMAX is the largest entry in NVAL. */ /* AFB (workspace) COMPLEX array, dimension (LAFB) */ /* LAFB (input) INTEGER */ /* The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX */ /* where NMAX is the largest entry in NVAL. */ /* ASAV (workspace) COMPLEX array, dimension (LA) */ /* B (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* BSAV (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* S (workspace) REAL array, dimension (2*NMAX) */ /* WORK (workspace) COMPLEX array, dimension */ /* (NMAX*max(3,NRHS,NMAX)) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NRHS)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* replace NRHS with 99 to make f2c work through */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afb; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; ldb = max(n,1); *(unsigned char *)xtype = 'N'; /* Set limits on the number of loop iterations. */ /* Computing MAX */ i__2 = 1, i__3 = min(n,4); nkl = max(i__2,i__3); if (n == 0) { nkl = 1; } nku = nkl; nimat = 8; if (n <= 0) { nimat = 1; } i__2 = nkl; for (ikl = 1; ikl <= i__2; ++ikl) { /* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes */ /* it easier to skip redundant values for small values of N. */ if (ikl == 1) { kl = 0; } else if (ikl == 2) { /* Computing MAX */ i__3 = n - 1; kl = max(i__3,0); } else if (ikl == 3) { kl = (n * 3 - 1) / 4; } else if (ikl == 4) { kl = (n + 1) / 4; } i__3 = nku; for (iku = 1; iku <= i__3; ++iku) { /* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order */ /* makes it easier to skip redundant values for small */ /* values of N. */ if (iku == 1) { ku = 0; } else if (iku == 2) { /* Computing MAX */ i__4 = n - 1; ku = max(i__4,0); } else if (iku == 3) { ku = (n * 3 - 1) / 4; } else if (iku == 4) { ku = (n + 1) / 4; } /* Check that A and AFB are big enough to generate this */ /* matrix. */ lda = kl + ku + 1; ldafb = (kl << 1) + ku + 1; if (lda * n > *la || ldafb * n > *lafb) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (lda * n > *la) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); i__4 = n * (kl + ku + 1); do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer)); e_wsfe(); ++nerrs; } if (ldafb * n > *lafb) { io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, (char *)&(*lafb), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); i__4 = n * ((kl << 1) + ku + 1); do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer)); e_wsfe(); ++nerrs; } goto L130; } i__4 = nimat; for (imat = 1; imat <= i__4; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 2, 3, or 4 if the matrix is too small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L120; } /* Set up parameters with CLATB4 and generate a */ /* test matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); rcondc = 1.f / cndnum; s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)32, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "Z", &a[1], &lda, &work[ 1], &info); /* Check the error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, " ", &n, &n, & kl, &ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L120; } /* For types 2, 3, and 4, zero one or more columns of */ /* the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 4) { /* Computing MAX */ i__5 = 1, i__6 = ku + 2 - izero; i1 = max(i__5,i__6); /* Computing MIN */ i__5 = kl + ku + 1, i__6 = ku + 1 + (n - izero); i2 = min(i__5,i__6); i__5 = i2; for (i__ = i1; i__ <= i__5; ++i__) { i__6 = ioff + i__; a[i__6].r = 0.f, a[i__6].i = 0.f; /* L20: */ } } else { i__5 = n; for (j = izero; j <= i__5; ++j) { /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - j; /* Computing MIN */ i__9 = kl + ku + 1, i__10 = ku + 1 + (n - j); i__8 = min(i__9,i__10); for (i__ = max(i__6,i__7); i__ <= i__8; ++i__) { i__6 = ioff + i__; a[i__6].r = 0.f, a[i__6].i = 0.f; /* L30: */ } ioff += lda; /* L40: */ } } } /* Save a copy of the matrix A in ASAV. */ i__5 = kl + ku + 1; clacpy_("Full", &i__5, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 4; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__5 = nfact; for (ifact = 1; ifact <= i__5; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L100; } rcondo = 0.f; rcondi = 0.f; } else if (! nofact) { /* Compute the condition number for comparison */ /* with the value returned by SGESVX (FACT = */ /* 'N' reuses the condition number from the */ /* previous iteration with FACT = 'F'). */ i__8 = kl + ku + 1; clacpy_("Full", &i__8, &n, &asav[1], &lda, & afb[kl + 1], &ldafb); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ cgbequ_(&n, &n, &kl, &ku, &afb[kl + 1], & ldafb, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, &info); if (info == 0 && n > 0) { if (lsame_(equed, "R")) { rowcnd = 0.f; colcnd = 1.f; } else if (lsame_(equed, "C")) { rowcnd = 1.f; colcnd = 0.f; } else if (lsame_(equed, "B")) { rowcnd = 0.f; colcnd = 0.f; } /* Equilibrate the matrix. */ claqgb_(&n, &n, &kl, &ku, &afb[kl + 1] , &ldafb, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in CGET04. */ if (equil) { roldo = rcondo; roldi = rcondi; } /* Compute the 1-norm and infinity-norm of A. */ anormo = clangb_("1", &n, &kl, &ku, &afb[kl + 1], &ldafb, &rwork[1]); anormi = clangb_("I", &n, &kl, &ku, &afb[kl + 1], &ldafb, &rwork[1]); /* Factor the matrix A. */ cgbtrf_(&n, &n, &kl, &ku, &afb[1], &ldafb, & iwork[1], &info); /* Form the inverse of A. */ claset_("Full", &n, &n, &c_b48, &c_b49, &work[ 1], &ldb); s_copy(srnamc_1.srnamt, "CGBTRS", (ftnlen)32, (ftnlen)6); cgbtrs_("No transpose", &n, &kl, &ku, &n, & afb[1], &ldafb, &iwork[1], &work[1], & ldb, &info); /* Compute the 1-norm condition number of A. */ ainvnm = clange_("1", &n, &n, &work[1], &ldb, &rwork[1]); if (anormo <= 0.f || ainvnm <= 0.f) { rcondo = 1.f; } else { rcondo = 1.f / anormo / ainvnm; } /* Compute the infinity-norm condition number */ /* of A. */ ainvnm = clange_("I", &n, &n, &work[1], &ldb, &rwork[1]); if (anormi <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { /* Do for each value of TRANS. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Restore the matrix A. */ i__8 = kl + ku + 1; clacpy_("Full", &i__8, &n, &asav[1], &lda, &a[ 1], &lda); /* Form an exact solution and set the right hand */ /* side. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)32, (ftnlen)6); clarhs_(path, xtype, "Full", trans, &n, &n, & kl, &ku, nrhs, &a[1], &lda, &xact[1], &ldb, &b[1], &ldb, iseed, &info); *(unsigned char *)xtype = 'C'; clacpy_("Full", &n, nrhs, &b[1], &ldb, &bsav[ 1], &ldb); if (nofact && itran == 1) { /* --- Test CGBSV --- */ /* Compute the LU factorization of the matrix */ /* and solve the system. */ i__8 = kl + ku + 1; clacpy_("Full", &i__8, &n, &a[1], &lda, & afb[kl + 1], &ldafb); clacpy_("Full", &n, nrhs, &b[1], &ldb, &x[ 1], &ldb); s_copy(srnamc_1.srnamt, "CGBSV ", (ftnlen) 32, (ftnlen)6); cgbsv_(&n, &kl, &ku, nrhs, &afb[1], & ldafb, &iwork[1], &x[1], &ldb, & info); /* Check error code from CGBSV . */ if (info == n + 1) { goto L90; } if (info != izero) { alaerh_(path, "CGBSV ", &info, &izero, " ", &n, &n, &kl, &ku, nrhs, &imat, &nfail, &nerrs, nout); goto L90; } /* Reconstruct matrix from factors and */ /* compute residual. */ cgbt01_(&n, &n, &kl, &ku, &a[1], &lda, & afb[1], &ldafb, &iwork[1], &work[ 1], result); nt = 1; if (izero == 0) { /* Compute residual of the computed */ /* solution. */ clacpy_("Full", &n, nrhs, &b[1], &ldb, &work[1], &ldb); cgbt02_("No transpose", &n, &n, &kl, & ku, nrhs, &a[1], &lda, &x[1], &ldb, &work[1], &ldb, &result[ 1]); /* Check solution from generated exact */ /* solution. */ cget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &rcondc, &result[2]) ; nt = 3; } /* Print information about the tests that did */ /* not pass the threshold. */ i__8 = nt; for (k = 1; k <= i__8; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___65.ciunit = *nout; s_wsfe(&io___65); do_fio(&c__1, "CGBSV ", (ftnlen)6) ; do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L50: */ } nrun += nt; } /* --- Test CGBSVX --- */ if (! prefac) { i__8 = (kl << 1) + ku + 1; claset_("Full", &i__8, &n, &c_b48, &c_b48, &afb[1], &ldafb); } claset_("Full", &n, nrhs, &c_b48, &c_b48, &x[ 1], &ldb); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and */ /* EQUED = 'R', 'C', or 'B'. */ claqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[ 1], &s[n + 1], &rowcnd, &colcnd, & amax, equed); } /* Solve the system and compute the condition */ /* number and error bounds using CGBSVX. */ s_copy(srnamc_1.srnamt, "CGBSVX", (ftnlen)32, (ftnlen)6); cgbsvx_(fact, trans, &n, &kl, &ku, nrhs, &a[1] , &lda, &afb[1], &ldafb, &iwork[1], equed, &s[1], &s[ldb + 1], &b[1], & ldb, &x[1], &ldb, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &rwork[(* nrhs << 1) + 1], &info); /* Check the error code from CGBSVX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__11[0] = 1, a__1[0] = fact; i__11[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__11, &c__2, (ftnlen) 2); alaerh_(path, "CGBSVX", &info, &izero, ch__1, &n, &n, &kl, &ku, nrhs, & imat, &nfail, &nerrs, nout); goto L90; } /* Compare RWORK(2*NRHS+1) from CGBSVX with the */ /* computed reciprocal pivot growth RPVGRW */ if (info != 0) { anrmpv = 0.f; i__8 = info; for (j = 1; j <= i__8; ++j) { /* Computing MAX */ i__6 = ku + 2 - j; /* Computing MIN */ i__9 = n + ku + 1 - j, i__10 = kl + ku + 1; i__7 = min(i__9,i__10); for (i__ = max(i__6,1); i__ <= i__7; ++i__) { /* Computing MAX */ r__1 = anrmpv, r__2 = c_abs(&a[ i__ + (j - 1) * lda]); anrmpv = dmax(r__1,r__2); /* L60: */ } /* L70: */ } /* Computing MIN */ i__7 = info - 1, i__6 = kl + ku; i__8 = min(i__7,i__6); /* Computing MAX */ i__9 = 1, i__10 = kl + ku + 2 - info; rpvgrw = clantb_("M", "U", "N", &info, & i__8, &afb[max(i__9, i__10)], & ldafb, rdum); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = anrmpv / rpvgrw; } } else { i__8 = kl + ku; rpvgrw = clantb_("M", "U", "N", &n, &i__8, &afb[1], &ldafb, rdum); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = clangb_("M", &n, &kl, &ku, & a[1], &lda, rdum) / rpvgrw; } } /* Computing MAX */ r__2 = rwork[(*nrhs << 1) + 1]; result[6] = (r__1 = rpvgrw - rwork[(*nrhs << 1) + 1], dabs(r__1)) / dmax(r__2, rpvgrw) / slamch_("E"); if (! prefac) { /* Reconstruct matrix from factors and */ /* compute residual. */ cgbt01_(&n, &n, &kl, &ku, &a[1], &lda, & afb[1], &ldafb, &iwork[1], &work[ 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &bsav[1], &ldb, &work[1], &ldb); cgbt02_(trans, &n, &n, &kl, &ku, nrhs, & asav[1], &lda, &x[1], &ldb, &work[ 1], &ldb, &result[1]); /* Check solution from generated exact */ /* solution. */ if (nofact || prefac && lsame_(equed, "N")) { cget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &rcondc, &result[2]) ; } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } cget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ cgbt05_(trans, &n, &kl, &ku, nrhs, &asav[ 1], &lda, &bsav[1], &ldb, &x[1], & ldb, &xact[1], &ldb, &rwork[1], & rwork[*nrhs + 1], &result[3]); } else { trfcon = TRUE_; } /* Compare RCOND from CGBSVX with the computed */ /* value in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did */ /* not pass the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___73.ciunit = *nout; s_wsfe(&io___73); do_fio(&c__1, "CGBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } else { io___74.ciunit = *nout; s_wsfe(&io___74); do_fio(&c__1, "CGBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___75.ciunit = *nout; s_wsfe(&io___75); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } else { io___76.ciunit = *nout; s_wsfe(&io___76); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___77.ciunit = *nout; s_wsfe(&io___77); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } else { io___78.ciunit = *nout; s_wsfe(&io___78); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___79.ciunit = *nout; s_wsfe(&io___79); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } else { io___80.ciunit = *nout; s_wsfe(&io___80); do_fio(&c__1, "CGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } } /* --- Test CGBSVXX --- */ /* Restore the matrices A and B. */ /* write(*,*) 'begin cgbsvxx testing' */ i__8 = kl + ku + 1; clacpy_("Full", &i__8, &n, &asav[1], &lda, &a[ 1], &lda); clacpy_("Full", &n, nrhs, &bsav[1], &ldb, &b[ 1], &ldb); if (! prefac) { i__8 = (kl << 1) + ku + 1; claset_("Full", &i__8, &n, &c_b197, & c_b197, &afb[1], &ldafb); } claset_("Full", &n, nrhs, &c_b197, &c_b197, & x[1], &ldb); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and */ /* EQUED = 'R', 'C', or 'B'. */ claqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[ 1], &s[n + 1], &rowcnd, &colcnd, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using CGBSVXX. */ s_copy(srnamc_1.srnamt, "CGBSVXX", (ftnlen)32, (ftnlen)7); n_err_bnds__ = 3; salloc3(); cgbsvxx_(fact, trans, &n, &kl, &ku, nrhs, &a[ 1], &lda, &afb[1], &ldafb, &iwork[1], equed, &s[1], &s[n + 1], &b[1], &ldb, &x[1], &ldb, &rcond, &rpvgrw_svxx__, berr, &n_err_bnds__, errbnds_n__, errbnds_c__, &c__0, &c_b197, &work[1], &rwork[1], &info); free3(); /* Check the error code from CGBSVXX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__11[0] = 1, a__1[0] = fact; i__11[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__11, &c__2, (ftnlen) 2); alaerh_(path, "CGBSVXX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L90; } /* Compare rpvgrw_svxx from CGESVXX with the computed */ /* reciprocal pivot growth factor RPVGRW */ if (info > 0 && info < n + 1) { rpvgrw = cla_gbrpvgrw__(&n, &kl, &ku, & info, &a[1], &lda, &afb[1], & ldafb); } else { rpvgrw = cla_gbrpvgrw__(&n, &kl, &ku, &n, &a[1], &lda, &afb[1], &ldafb); } result[6] = (r__1 = rpvgrw - rpvgrw_svxx__, dabs(r__1)) / dmax(rpvgrw_svxx__, rpvgrw) / slamch_("E"); if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ cgbt01_(&n, &n, &kl, &ku, &a[1], &lda, & afb[1], &ldafb, &iwork[1], &rwork[ (*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &bsav[1], &ldb, &work[1], &ldb); cgbt02_(trans, &n, &n, &kl, &ku, nrhs, & asav[1], &lda, &x[1], &ldb, &work[ 1], &ldb, &rwork[(*nrhs << 1) + 1] , &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { cget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &rcondc, &result[2]) ; } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } cget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &roldc, &result[2]); } } else { trfcon = TRUE_; } /* Compare RCOND from CGBSVXX with the computed value */ /* in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___86.ciunit = *nout; s_wsfe(&io___86); do_fio(&c__1, "CGBSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } else { io___87.ciunit = *nout; s_wsfe(&io___87); do_fio(&c__1, "CGBSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; } /* L45: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___88.ciunit = *nout; s_wsfe(&io___88); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } else { io___89.ciunit = *nout; s_wsfe(&io___89); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___90.ciunit = *nout; s_wsfe(&io___90); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } else { io___91.ciunit = *nout; s_wsfe(&io___91); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___92.ciunit = *nout; s_wsfe(&io___92); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } else { io___93.ciunit = *nout; s_wsfe(&io___93); do_fio(&c__1, "CGBSVXX", (ftnlen) 7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } } L90: ; } L100: ; } /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* L150: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); /* Test Error Bounds from CGBSVXX */ cebchvxx_(thresh, path); return 0; /* End of CDRVGB */ } /* cdrvgb_ */