/* zupgtr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zupgtr_(char *uplo, integer *n, doublecomplex *ap, doublecomplex *tau, doublecomplex *q, integer *ldq, doublecomplex * work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, j, ij; extern logical lsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int zung2l_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zung2r_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZUPGTR generates a complex unitary matrix Q which is defined as the */ /* product of n-1 elementary reflectors H(i) of order n, as returned by */ /* ZHPTRD using packed storage: */ /* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), */ /* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangular packed storage used in previous */ /* call to ZHPTRD; */ /* = 'L': Lower triangular packed storage used in previous */ /* call to ZHPTRD. */ /* N (input) INTEGER */ /* The order of the matrix Q. N >= 0. */ /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The vectors which define the elementary reflectors, as */ /* returned by ZHPTRD. */ /* TAU (input) COMPLEX*16 array, dimension (N-1) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by ZHPTRD. */ /* Q (output) COMPLEX*16 array, dimension (LDQ,N) */ /* The N-by-N unitary matrix Q. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (N-1) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ --ap; --tau; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("ZUPGTR", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (upper) { /* Q was determined by a call to ZHPTRD with UPLO = 'U' */ /* Unpack the vectors which define the elementary reflectors and */ /* set the last row and column of Q equal to those of the unit */ /* matrix */ ij = 2; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * q_dim1; i__4 = ij; q[i__3].r = ap[i__4].r, q[i__3].i = ap[i__4].i; ++ij; /* L10: */ } ij += 2; i__2 = *n + j * q_dim1; q[i__2].r = 0., q[i__2].i = 0.; /* L20: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + *n * q_dim1; q[i__2].r = 0., q[i__2].i = 0.; /* L30: */ } i__1 = *n + *n * q_dim1; q[i__1].r = 1., q[i__1].i = 0.; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; zung2l_(&i__1, &i__2, &i__3, &q[q_offset], ldq, &tau[1], &work[1], & iinfo); } else { /* Q was determined by a call to ZHPTRD with UPLO = 'L'. */ /* Unpack the vectors which define the elementary reflectors and */ /* set the first row and column of Q equal to those of the unit */ /* matrix */ i__1 = q_dim1 + 1; q[i__1].r = 1., q[i__1].i = 0.; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__ + q_dim1; q[i__2].r = 0., q[i__2].i = 0.; /* L40: */ } ij = 3; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j * q_dim1 + 1; q[i__2].r = 0., q[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * q_dim1; i__4 = ij; q[i__3].r = ap[i__4].r, q[i__3].i = ap[i__4].i; ++ij; /* L50: */ } ij += 2; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; zung2r_(&i__1, &i__2, &i__3, &q[(q_dim1 << 1) + 2], ldq, &tau[1], &work[1], &iinfo); } } return 0; /* End of ZUPGTR */ } /* zupgtr_ */