/* ztpttf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ztpttf_(char *transr, char *uplo, integer *n, doublecomplex *ap, doublecomplex *arf, integer *info) { /* System generated locals */ integer i__1, i__2, i__3, i__4; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp; logical normaltransr; extern logical lsame_(char *, char *); logical lower; extern /* Subroutine */ int xerbla_(char *, integer *); logical nisodd; /* -- LAPACK routine (version 3.2) -- */ /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ /* -- November 2008 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* Purpose */ /* ======= */ /* ZTPTTF copies a triangular matrix A from standard packed format (TP) */ /* to rectangular full packed format (TF). */ /* Arguments */ /* ========= */ /* TRANSR (input) CHARACTER */ /* = 'N': ARF in Normal format is wanted; */ /* = 'C': ARF in Conjugate-transpose format is wanted. */ /* UPLO (input) CHARACTER */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) COMPLEX*16 array, dimension ( N*(N+1)/2 ), */ /* On entry, the upper or lower triangular matrix A, packed */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* ARF (output) COMPLEX*16 array, dimension ( N*(N+1)/2 ), */ /* On exit, the upper or lower triangular matrix A stored in */ /* RFP format. For a further discussion see Notes below. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Notes: */ /* ====== */ /* We first consider Standard Packed Format when N is even. */ /* We give an example where N = 6. */ /* AP is Upper AP is Lower */ /* 00 01 02 03 04 05 00 */ /* 11 12 13 14 15 10 11 */ /* 22 23 24 25 20 21 22 */ /* 33 34 35 30 31 32 33 */ /* 44 45 40 41 42 43 44 */ /* 55 50 51 52 53 54 55 */ /* Let TRANSR = 'N'. RFP holds AP as follows: */ /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ /* conjugate-transpose of the first three columns of AP upper. */ /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ /* conjugate-transpose of the last three columns of AP lower. */ /* To denote conjugate we place -- above the element. This covers the */ /* case N even and TRANSR = 'N'. */ /* RFP A RFP A */ /* -- -- -- */ /* 03 04 05 33 43 53 */ /* -- -- */ /* 13 14 15 00 44 54 */ /* -- */ /* 23 24 25 10 11 55 */ /* 33 34 35 20 21 22 */ /* -- */ /* 00 44 45 30 31 32 */ /* -- -- */ /* 01 11 55 40 41 42 */ /* -- -- -- */ /* 02 12 22 50 51 52 */ /* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ /* transpose of RFP A above. One therefore gets: */ /* RFP A RFP A */ /* -- -- -- -- -- -- -- -- -- -- */ /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ /* -- -- -- -- -- -- -- -- -- -- */ /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ /* -- -- -- -- -- -- -- -- -- -- */ /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ /* We next consider Standard Packed Format when N is odd. */ /* We give an example where N = 5. */ /* AP is Upper AP is Lower */ /* 00 01 02 03 04 00 */ /* 11 12 13 14 10 11 */ /* 22 23 24 20 21 22 */ /* 33 34 30 31 32 33 */ /* 44 40 41 42 43 44 */ /* Let TRANSR = 'N'. RFP holds AP as follows: */ /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ /* conjugate-transpose of the first two columns of AP upper. */ /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ /* conjugate-transpose of the last two columns of AP lower. */ /* To denote conjugate we place -- above the element. This covers the */ /* case N odd and TRANSR = 'N'. */ /* RFP A RFP A */ /* -- -- */ /* 02 03 04 00 33 43 */ /* -- */ /* 12 13 14 10 11 44 */ /* 22 23 24 20 21 22 */ /* -- */ /* 00 33 34 30 31 32 */ /* -- -- */ /* 01 11 44 40 41 42 */ /* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ /* transpose of RFP A above. One therefore gets: */ /* RFP A RFP A */ /* -- -- -- -- -- -- -- -- -- */ /* 02 12 22 00 01 00 10 20 30 40 50 */ /* -- -- -- -- -- -- -- -- -- */ /* 03 13 23 33 11 33 11 21 31 41 51 */ /* -- -- -- -- -- -- -- -- -- */ /* 04 14 24 34 44 43 44 22 32 42 52 */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ *info = 0; normaltransr = lsame_(transr, "N"); lower = lsame_(uplo, "L"); if (! normaltransr && ! lsame_(transr, "C")) { *info = -1; } else if (! lower && ! lsame_(uplo, "U")) { *info = -2; } else if (*n < 0) { *info = -3; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTPTTF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (normaltransr) { arf[0].r = ap[0].r, arf[0].i = ap[0].i; } else { d_cnjg(&z__1, ap); arf[0].r = z__1.r, arf[0].i = z__1.i; } return 0; } /* Size of array ARF(0:NT-1) */ nt = *n * (*n + 1) / 2; /* Set N1 and N2 depending on LOWER */ if (lower) { n2 = *n / 2; n1 = *n - n2; } else { n1 = *n / 2; n2 = *n - n1; } /* If N is odd, set NISODD = .TRUE. */ /* If N is even, set K = N/2 and NISODD = .FALSE. */ /* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */ /* where noe = 0 if n is even, noe = 1 if n is odd */ if (*n % 2 == 0) { k = *n / 2; nisodd = FALSE_; lda = *n + 1; } else { nisodd = TRUE_; lda = *n; } /* ARF^C has lda rows and n+1-noe cols */ if (! normaltransr) { lda = (*n + 1) / 2; } /* start execution: there are eight cases */ if (nisodd) { /* N is odd */ if (normaltransr) { /* N is odd and TRANSR = 'N' */ if (lower) { /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */ /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */ /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */ ijp = 0; jp = 0; i__1 = n2; for (j = 0; j <= i__1; ++j) { i__2 = *n - 1; for (i__ = j; i__ <= i__2; ++i__) { ij = i__ + jp; i__3 = ij; i__4 = ijp; arf[i__3].r = ap[i__4].r, arf[i__3].i = ap[i__4].i; ++ijp; } jp += lda; } i__1 = n2 - 1; for (i__ = 0; i__ <= i__1; ++i__) { i__2 = n2; for (j = i__ + 1; j <= i__2; ++j) { ij = i__ + j * lda; i__3 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__3].r = z__1.r, arf[i__3].i = z__1.i; ++ijp; } } } else { /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */ /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */ /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */ ijp = 0; i__1 = n1 - 1; for (j = 0; j <= i__1; ++j) { ij = n2 + j; i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__3].r = z__1.r, arf[i__3].i = z__1.i; ++ijp; ij += lda; } } js = 0; i__1 = *n - 1; for (j = n1; j <= i__1; ++j) { ij = js; i__2 = js + j; for (ij = js; ij <= i__2; ++ij) { i__3 = ij; i__4 = ijp; arf[i__3].r = ap[i__4].r, arf[i__3].i = ap[i__4].i; ++ijp; } js += lda; } } } else { /* N is odd and TRANSR = 'C' */ if (lower) { /* SRPA for LOWER, TRANSPOSE and N is odd */ /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */ /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */ ijp = 0; i__1 = n2; for (i__ = 0; i__ <= i__1; ++i__) { i__2 = *n * lda - 1; i__3 = lda; for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <= i__2; ij += i__3) { i__4 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__4].r = z__1.r, arf[i__4].i = z__1.i; ++ijp; } } js = 1; i__1 = n2 - 1; for (j = 0; j <= i__1; ++j) { i__3 = js + n2 - j - 1; for (ij = js; ij <= i__3; ++ij) { i__2 = ij; i__4 = ijp; arf[i__2].r = ap[i__4].r, arf[i__2].i = ap[i__4].i; ++ijp; } js = js + lda + 1; } } else { /* SRPA for UPPER, TRANSPOSE and N is odd */ /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */ /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */ ijp = 0; js = n2 * lda; i__1 = n1 - 1; for (j = 0; j <= i__1; ++j) { i__3 = js + j; for (ij = js; ij <= i__3; ++ij) { i__2 = ij; i__4 = ijp; arf[i__2].r = ap[i__4].r, arf[i__2].i = ap[i__4].i; ++ijp; } js += lda; } i__1 = n1; for (i__ = 0; i__ <= i__1; ++i__) { i__3 = i__ + (n1 + i__) * lda; i__2 = lda; for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += i__2) { i__4 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__4].r = z__1.r, arf[i__4].i = z__1.i; ++ijp; } } } } } else { /* N is even */ if (normaltransr) { /* N is even and TRANSR = 'N' */ if (lower) { /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */ /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */ ijp = 0; jp = 0; i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = *n - 1; for (i__ = j; i__ <= i__2; ++i__) { ij = i__ + 1 + jp; i__3 = ij; i__4 = ijp; arf[i__3].r = ap[i__4].r, arf[i__3].i = ap[i__4].i; ++ijp; } jp += lda; } i__1 = k - 1; for (i__ = 0; i__ <= i__1; ++i__) { i__2 = k - 1; for (j = i__; j <= i__2; ++j) { ij = i__ + j * lda; i__3 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__3].r = z__1.r, arf[i__3].i = z__1.i; ++ijp; } } } else { /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */ /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */ ijp = 0; i__1 = k - 1; for (j = 0; j <= i__1; ++j) { ij = k + 1 + j; i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__3].r = z__1.r, arf[i__3].i = z__1.i; ++ijp; ij += lda; } } js = 0; i__1 = *n - 1; for (j = k; j <= i__1; ++j) { ij = js; i__2 = js + j; for (ij = js; ij <= i__2; ++ij) { i__3 = ij; i__4 = ijp; arf[i__3].r = ap[i__4].r, arf[i__3].i = ap[i__4].i; ++ijp; } js += lda; } } } else { /* N is even and TRANSR = 'C' */ if (lower) { /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */ /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */ /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */ ijp = 0; i__1 = k - 1; for (i__ = 0; i__ <= i__1; ++i__) { i__2 = (*n + 1) * lda - 1; i__3 = lda; for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 : ij <= i__2; ij += i__3) { i__4 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__4].r = z__1.r, arf[i__4].i = z__1.i; ++ijp; } } js = 0; i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__3 = js + k - j - 1; for (ij = js; ij <= i__3; ++ij) { i__2 = ij; i__4 = ijp; arf[i__2].r = ap[i__4].r, arf[i__2].i = ap[i__4].i; ++ijp; } js = js + lda + 1; } } else { /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */ /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */ /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */ ijp = 0; js = (k + 1) * lda; i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__3 = js + j; for (ij = js; ij <= i__3; ++ij) { i__2 = ij; i__4 = ijp; arf[i__2].r = ap[i__4].r, arf[i__2].i = ap[i__4].i; ++ijp; } js += lda; } i__1 = k - 1; for (i__ = 0; i__ <= i__1; ++i__) { i__3 = i__ + (k + i__) * lda; i__2 = lda; for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += i__2) { i__4 = ij; d_cnjg(&z__1, &ap[ijp]); arf[i__4].r = z__1.r, arf[i__4].i = z__1.i; ++ijp; } } } } } return 0; /* End of ZTPTTF */ } /* ztpttf_ */