/* zspr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zspr_(char *uplo, integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *ap) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2; /* Local variables */ integer i__, j, k, kk, ix, jx, kx, info; doublecomplex temp; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZSPR performs the symmetric rank 1 operation */ /* A := alpha*x*conjg( x' ) + A, */ /* where alpha is a complex scalar, x is an n element vector and A is an */ /* n by n symmetric matrix, supplied in packed form. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the matrix A is supplied in the packed */ /* array AP as follows: */ /* UPLO = 'U' or 'u' The upper triangular part of A is */ /* supplied in AP. */ /* UPLO = 'L' or 'l' The lower triangular part of A is */ /* supplied in AP. */ /* Unchanged on exit. */ /* N (input) INTEGER */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA (input) COMPLEX*16 */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* X (input) COMPLEX*16 array, dimension at least */ /* ( 1 + ( N - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the N- */ /* element vector x. */ /* Unchanged on exit. */ /* INCX (input) INTEGER */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* AP (input/output) COMPLEX*16 array, dimension at least */ /* ( ( N*( N + 1 ) )/2 ). */ /* Before entry, with UPLO = 'U' or 'u', the array AP must */ /* contain the upper triangular part of the symmetric matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ /* and a( 2, 2 ) respectively, and so on. On exit, the array */ /* AP is overwritten by the upper triangular part of the */ /* updated matrix. */ /* Before entry, with UPLO = 'L' or 'l', the array AP must */ /* contain the lower triangular part of the symmetric matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ /* and a( 3, 1 ) respectively, and so on. On exit, the array */ /* AP is overwritten by the lower triangular part of the */ /* updated matrix. */ /* Note that the imaginary parts of the diagonal elements need */ /* not be set, they are assumed to be zero, and on exit they */ /* are set to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --x; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } if (info != 0) { xerbla_("ZSPR ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || alpha->r == 0. && alpha->i == 0.) { return 0; } /* Set the start point in X if the increment is not unity. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of the array AP */ /* are accessed sequentially with one pass through AP. */ kk = 1; if (lsame_(uplo, "U")) { /* Form A when upper triangle is stored in AP. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = j; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; k = kk; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = k; i__4 = k; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ++k; /* L10: */ } i__2 = kk + j - 1; i__3 = kk + j - 1; i__4 = j; z__2.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__2.i = x[i__4].r * temp.i + x[i__4].i * temp.r; z__1.r = ap[i__3].r + z__2.r, z__1.i = ap[i__3].i + z__2.i; ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; } else { i__2 = kk + j - 1; i__3 = kk + j - 1; ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i; } kk += j; /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = jx; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; ix = kx; i__2 = kk + j - 2; for (k = kk; k <= i__2; ++k) { i__3 = k; i__4 = k; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ix += *incx; /* L30: */ } i__2 = kk + j - 1; i__3 = kk + j - 1; i__4 = jx; z__2.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__2.i = x[i__4].r * temp.i + x[i__4].i * temp.r; z__1.r = ap[i__3].r + z__2.r, z__1.i = ap[i__3].i + z__2.i; ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; } else { i__2 = kk + j - 1; i__3 = kk + j - 1; ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i; } jx += *incx; kk += j; /* L40: */ } } } else { /* Form A when lower triangle is stored in AP. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = j; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; i__2 = kk; i__3 = kk; i__4 = j; z__2.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__2.i = temp.r * x[i__4].i + temp.i * x[i__4].r; z__1.r = ap[i__3].r + z__2.r, z__1.i = ap[i__3].i + z__2.i; ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; k = kk + 1; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = k; i__4 = k; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; ++k; /* L50: */ } } else { i__2 = kk; i__3 = kk; ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i; } kk = kk + *n - j + 1; /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = jx; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; i__2 = kk; i__3 = kk; i__4 = jx; z__2.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__2.i = temp.r * x[i__4].i + temp.i * x[i__4].r; z__1.r = ap[i__3].r + z__2.r, z__1.i = ap[i__3].i + z__2.i; ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; ix = jx; i__2 = kk + *n - j; for (k = kk + 1; k <= i__2; ++k) { ix += *incx; i__3 = k; i__4 = k; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i + z__2.i; ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; /* L70: */ } } else { i__2 = kk; i__3 = kk; ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i; } jx += *incx; kk = kk + *n - j + 1; /* L80: */ } } } return 0; /* End of ZSPR */ } /* zspr_ */