/* zrot.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zrot_(integer *n, doublecomplex *cx, integer *incx, doublecomplex *cy, integer *incy, doublereal *c__, doublecomplex *s) { /* System generated locals */ integer i__1, i__2, i__3, i__4; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, ix, iy; doublecomplex stemp; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZROT applies a plane rotation, where the cos (C) is real and the */ /* sin (S) is complex, and the vectors CX and CY are complex. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of elements in the vectors CX and CY. */ /* CX (input/output) COMPLEX*16 array, dimension (N) */ /* On input, the vector X. */ /* On output, CX is overwritten with C*X + S*Y. */ /* INCX (input) INTEGER */ /* The increment between successive values of CY. INCX <> 0. */ /* CY (input/output) COMPLEX*16 array, dimension (N) */ /* On input, the vector Y. */ /* On output, CY is overwritten with -CONJG(S)*X + C*Y. */ /* INCY (input) INTEGER */ /* The increment between successive values of CY. INCX <> 0. */ /* C (input) DOUBLE PRECISION */ /* S (input) COMPLEX*16 */ /* C and S define a rotation */ /* [ C S ] */ /* [ -conjg(S) C ] */ /* where C*C + S*CONJG(S) = 1.0. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --cy; --cx; /* Function Body */ if (*n <= 0) { return 0; } if (*incx == 1 && *incy == 1) { goto L20; } /* Code for unequal increments or equal increments not equal to 1 */ ix = 1; iy = 1; if (*incx < 0) { ix = (-(*n) + 1) * *incx + 1; } if (*incy < 0) { iy = (-(*n) + 1) * *incy + 1; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = ix; z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i; i__3 = iy; z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[ i__3].i + s->i * cy[i__3].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; stemp.r = z__1.r, stemp.i = z__1.i; i__2 = iy; i__3 = iy; z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i; d_cnjg(&z__4, s); i__4 = ix; z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r * cx[i__4].i + z__4.i * cx[i__4].r; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; cy[i__2].r = z__1.r, cy[i__2].i = z__1.i; i__2 = ix; cx[i__2].r = stemp.r, cx[i__2].i = stemp.i; ix += *incx; iy += *incy; /* L10: */ } return 0; /* Code for both increments equal to 1 */ L20: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i; i__3 = i__; z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[ i__3].i + s->i * cy[i__3].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; stemp.r = z__1.r, stemp.i = z__1.i; i__2 = i__; i__3 = i__; z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i; d_cnjg(&z__4, s); i__4 = i__; z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r * cx[i__4].i + z__4.i * cx[i__4].r; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; cy[i__2].r = z__1.r, cy[i__2].i = z__1.i; i__2 = i__; cx[i__2].r = stemp.r, cx[i__2].i = stemp.i; /* L30: */ } return 0; } /* zrot_ */