/* zgeqp3.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* Subroutine */ int zgeqp3_(integer *m, integer *n, doublecomplex *a, integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, integer *lwork, doublereal *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd, nbmin, minmn, minws; extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaqp2_(integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer * ); integer topbmn, sminmn; extern /* Subroutine */ int zlaqps_(integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGEQP3 computes a QR factorization with column pivoting of a */ /* matrix A: A*P = Q*R using Level 3 BLAS. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the upper triangle of the array contains the */ /* min(M,N)-by-N upper trapezoidal matrix R; the elements below */ /* the diagonal, together with the array TAU, represent the */ /* unitary matrix Q as a product of min(M,N) elementary */ /* reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* JPVT (input/output) INTEGER array, dimension (N) */ /* On entry, if JPVT(J).ne.0, the J-th column of A is permuted */ /* to the front of A*P (a leading column); if JPVT(J)=0, */ /* the J-th column of A is a free column. */ /* On exit, if JPVT(J)=K, then the J-th column of A*P was the */ /* the K-th column of A. */ /* TAU (output) COMPLEX*16 array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= N+1. */ /* For optimal performance LWORK >= ( N+1 )*NB, where NB */ /* is the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real/complex scalar, and v is a real/complex vector */ /* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */ /* A(i+1:m,i), and tau in TAU(i). */ /* Based on contributions by */ /* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ /* X. Sun, Computer Science Dept., Duke University, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test input arguments */ /* ==================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --jpvt; --tau; --work; --rwork; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info == 0) { minmn = min(*m,*n); if (minmn == 0) { iws = 1; lwkopt = 1; } else { iws = *n + 1; nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1); lwkopt = (*n + 1) * nb; } work[1].r = (doublereal) lwkopt, work[1].i = 0.; if (*lwork < iws && ! lquery) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZGEQP3", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (minmn == 0) { return 0; } /* Move initial columns up front. */ nfxd = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (jpvt[j] != 0) { if (j != nfxd) { zswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], & c__1); jpvt[j] = jpvt[nfxd]; jpvt[nfxd] = j; } else { jpvt[j] = j; } ++nfxd; } else { jpvt[j] = j; } /* L10: */ } --nfxd; /* Factorize fixed columns */ /* ======================= */ /* Compute the QR factorization of fixed columns and update */ /* remaining columns. */ if (nfxd > 0) { na = min(*m,nfxd); /* CC CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */ zgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info); /* Computing MAX */ i__1 = iws, i__2 = (integer) work[1].r; iws = max(i__1,i__2); if (na < *n) { /* CC CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, */ /* CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, */ /* CC $ INFO ) */ i__1 = *n - na; zunmqr_("Left", "Conjugate Transpose", m, &i__1, &na, &a[a_offset] , lda, &tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork, info); /* Computing MAX */ i__1 = iws, i__2 = (integer) work[1].r; iws = max(i__1,i__2); } } /* Factorize free columns */ /* ====================== */ if (nfxd < minmn) { sm = *m - nfxd; sn = *n - nfxd; sminmn = minmn - nfxd; /* Determine the block size. */ nb = ilaenv_(&c__1, "ZGEQRF", " ", &sm, &sn, &c_n1, &c_n1); nbmin = 2; nx = 0; if (nb > 1 && nb < sminmn) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", &sm, &sn, &c_n1, & c_n1); nx = max(i__1,i__2); if (nx < sminmn) { /* Determine if workspace is large enough for blocked code. */ minws = (sn + 1) * nb; iws = max(iws,minws); if (*lwork < minws) { /* Not enough workspace to use optimal NB: Reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / (sn + 1); /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", &sm, &sn, & c_n1, &c_n1); nbmin = max(i__1,i__2); } } } /* Initialize partial column norms. The first N elements of work */ /* store the exact column norms. */ i__1 = *n; for (j = nfxd + 1; j <= i__1; ++j) { rwork[j] = dznrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1); rwork[*n + j] = rwork[j]; /* L20: */ } if (nb >= nbmin && nb < sminmn && nx < sminmn) { /* Use blocked code initially. */ j = nfxd + 1; /* Compute factorization: while loop. */ topbmn = minmn - nx; L30: if (j <= topbmn) { /* Computing MIN */ i__1 = nb, i__2 = topbmn - j + 1; jb = min(i__1,i__2); /* Factorize JB columns among columns J:N. */ i__1 = *n - j + 1; i__2 = j - 1; i__3 = *n - j + 1; zlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, & jpvt[j], &tau[j], &rwork[j], &rwork[*n + j], &work[1], &work[jb + 1], &i__3); j += fjb; goto L30; } } else { j = nfxd + 1; } /* Use unblocked code to factor the last or only block. */ if (j <= minmn) { i__1 = *n - j + 1; i__2 = j - 1; zlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[ j], &rwork[j], &rwork[*n + j], &work[1]); } } work[1].r = (doublereal) iws, work[1].i = 0.; return 0; /* End of ZGEQP3 */ } /* zgeqp3_ */