/* zgbsv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zgbsv_(integer *n, integer *kl, integer *ku, integer * nrhs, doublecomplex *ab, integer *ldab, integer *ipiv, doublecomplex * b, integer *ldb, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, i__1; /* Local variables */ extern /* Subroutine */ int xerbla_(char *, integer *), zgbtrf_( integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGBSV computes the solution to a complex system of linear equations */ /* A * X = B, where A is a band matrix of order N with KL subdiagonals */ /* and KU superdiagonals, and X and B are N-by-NRHS matrices. */ /* The LU decomposition with partial pivoting and row interchanges is */ /* used to factor A as A = L * U, where L is a product of permutation */ /* and unit lower triangular matrices with KL subdiagonals, and U is */ /* upper triangular with KL+KU superdiagonals. The factored form of A */ /* is then used to solve the system of equations A * X = B. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ /* On entry, the matrix A in band storage, in rows KL+1 to */ /* 2*KL+KU+1; rows 1 to KL of the array need not be set. */ /* The j-th column of A is stored in the j-th column of the */ /* array AB as follows: */ /* AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) */ /* On exit, details of the factorization: U is stored as an */ /* upper triangular band matrix with KL+KU superdiagonals in */ /* rows 1 to KL+KU+1, and the multipliers used during the */ /* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */ /* See below for further details. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ /* IPIV (output) INTEGER array, dimension (N) */ /* The pivot indices that define the permutation matrix P; */ /* row i of the matrix was interchanged with row IPIV(i). */ /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ /* On entry, the N-by-NRHS right hand side matrix B. */ /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, and the solution has not been computed. */ /* Further Details */ /* =============== */ /* The band storage scheme is illustrated by the following example, when */ /* M = N = 6, KL = 2, KU = 1: */ /* On entry: On exit: */ /* * * * + + + * * * u14 u25 u36 */ /* * * + + + + * * u13 u24 u35 u46 */ /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */ /* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */ /* Array elements marked * are not used by the routine; elements marked */ /* + need not be set on entry, but are required by the routine to store */ /* elements of U because of fill-in resulting from the row interchanges. */ /* ===================================================================== */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*kl < 0) { *info = -2; } else if (*ku < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldab < (*kl << 1) + *ku + 1) { *info = -6; } else if (*ldb < max(*n,1)) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGBSV ", &i__1); return 0; } /* Compute the LU factorization of the band matrix A. */ zgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ zgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[ 1], &b[b_offset], ldb, info); } return 0; /* End of ZGBSV */ } /* zgbsv_ */