/* sla_syrpvgrw.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" doublereal sla_syrpvgrw__(char *uplo, integer *n, integer *info, real *a, integer *lda, real *af, integer *ldaf, integer *ipiv, real *work, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; real ret_val, r__1, r__2, r__3; /* Local variables */ integer i__, j, k, kp; real tmp, amax, umax; extern logical lsame_(char *, char *); integer ncols; logical upper; real rpvgrw; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLA_SYRPVGRW computes the reciprocal pivot growth factor */ /* norm(A)/norm(U). The "max absolute element" norm is used. If this is */ /* much less than 1, the stability of the LU factorization of the */ /* (equilibrated) matrix A could be poor. This also means that the */ /* solution X, estimated condition numbers, and error bounds could be */ /* unreliable. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* INFO (input) INTEGER */ /* The value of INFO returned from SSYTRF, .i.e., the pivot in */ /* column INFO is exactly 0. */ /* NCOLS (input) INTEGER */ /* The number of columns of the matrix A. NCOLS >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) REAL array, dimension (LDAF,N) */ /* The block diagonal matrix D and the multipliers used to */ /* obtain the factor U or L as computed by SSYTRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by SSYTRF. */ /* WORK (input) REAL array, dimension (2*N) */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --work; /* Function Body */ upper = lsame_("Upper", uplo); if (*info == 0) { if (upper) { ncols = 1; } else { ncols = *n; } } else { ncols = *info; } rpvgrw = 1.f; i__1 = *n << 1; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; } /* Find the max magnitude entry of each column of A. Compute the max */ /* for all N columns so we can apply the pivot permutation while */ /* looping below. Assume a full factorization is the common case. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)), r__3 = work[* n + i__]; work[*n + i__] = dmax(r__2,r__3); /* Computing MAX */ r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)), r__3 = work[* n + j]; work[*n + j] = dmax(r__2,r__3); } } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)), r__3 = work[* n + i__]; work[*n + i__] = dmax(r__2,r__3); /* Computing MAX */ r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)), r__3 = work[* n + j]; work[*n + j] = dmax(r__2,r__3); } } } /* Now find the max magnitude entry of each column of U or L. Also */ /* permute the magnitudes of A above so they're in the same order as */ /* the factor. */ /* The iteration orders and permutations were copied from ssytrs. */ /* Calls to SSWAP would be severe overkill. */ if (upper) { k = *n; while(k < ncols && k > 0) { if (ipiv[k] > 0) { /* 1x1 pivot */ kp = ipiv[k]; if (kp != k) { tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; } i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__2 = (r__1 = af[i__ + k * af_dim1], dabs(r__1)), r__3 = work[k]; work[k] = dmax(r__2,r__3); } --k; } else { /* 2x2 pivot */ kp = -ipiv[k]; tmp = work[*n + k - 1]; work[*n + k - 1] = work[*n + kp]; work[*n + kp] = tmp; i__1 = k - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__2 = (r__1 = af[i__ + k * af_dim1], dabs(r__1)), r__3 = work[k]; work[k] = dmax(r__2,r__3); /* Computing MAX */ r__2 = (r__1 = af[i__ + (k - 1) * af_dim1], dabs(r__1)), r__3 = work[k - 1]; work[k - 1] = dmax(r__2,r__3); } /* Computing MAX */ r__2 = (r__1 = af[k + k * af_dim1], dabs(r__1)), r__3 = work[ k]; work[k] = dmax(r__2,r__3); k += -2; } } k = ncols; while(k <= *n) { if (ipiv[k] > 0) { kp = ipiv[k]; if (kp != k) { tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; } ++k; } else { kp = -ipiv[k]; tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; k += 2; } } } else { k = 1; while(k <= ncols) { if (ipiv[k] > 0) { /* 1x1 pivot */ kp = ipiv[k]; if (kp != k) { tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; } i__1 = *n; for (i__ = k; i__ <= i__1; ++i__) { /* Computing MAX */ r__2 = (r__1 = af[i__ + k * af_dim1], dabs(r__1)), r__3 = work[k]; work[k] = dmax(r__2,r__3); } ++k; } else { /* 2x2 pivot */ kp = -ipiv[k]; tmp = work[*n + k + 1]; work[*n + k + 1] = work[*n + kp]; work[*n + kp] = tmp; i__1 = *n; for (i__ = k + 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__2 = (r__1 = af[i__ + k * af_dim1], dabs(r__1)), r__3 = work[k]; work[k] = dmax(r__2,r__3); /* Computing MAX */ r__2 = (r__1 = af[i__ + (k + 1) * af_dim1], dabs(r__1)), r__3 = work[k + 1]; work[k + 1] = dmax(r__2,r__3); } /* Computing MAX */ r__2 = (r__1 = af[k + k * af_dim1], dabs(r__1)), r__3 = work[ k]; work[k] = dmax(r__2,r__3); k += 2; } } k = ncols; while(k >= 1) { if (ipiv[k] > 0) { kp = ipiv[k]; if (kp != k) { tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; } --k; } else { kp = -ipiv[k]; tmp = work[*n + k]; work[*n + k] = work[*n + kp]; work[*n + kp] = tmp; k += -2; } } } /* Compute the *inverse* of the max element growth factor. Dividing */ /* by zero would imply the largest entry of the factor's column is */ /* zero. Than can happen when either the column of A is zero or */ /* massive pivots made the factor underflow to zero. Neither counts */ /* as growth in itself, so simply ignore terms with zero */ /* denominators. */ if (upper) { i__1 = *n; for (i__ = ncols; i__ <= i__1; ++i__) { umax = work[i__]; amax = work[*n + i__]; if (umax != 0.f) { /* Computing MIN */ r__1 = amax / umax; rpvgrw = dmin(r__1,rpvgrw); } } } else { i__1 = ncols; for (i__ = 1; i__ <= i__1; ++i__) { umax = work[i__]; amax = work[*n + i__]; if (umax != 0.f) { /* Computing MIN */ r__1 = amax / umax; rpvgrw = dmin(r__1,rpvgrw); } } } ret_val = rpvgrw; return ret_val; } /* sla_syrpvgrw__ */