/* dtrexc.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; /* Subroutine */ int dtrexc_(char *compq, integer *n, doublereal *t, integer * ldt, doublereal *q, integer *ldq, integer *ifst, integer *ilst, doublereal *work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1; /* Local variables */ integer nbf, nbl, here; extern logical lsame_(char *, char *); logical wantq; extern /* Subroutine */ int dlaexc_(logical *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, integer *), xerbla_(char *, integer *); integer nbnext; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTREXC reorders the real Schur factorization of a real matrix */ /* A = Q*T*Q**T, so that the diagonal block of T with row index IFST is */ /* moved to row ILST. */ /* The real Schur form T is reordered by an orthogonal similarity */ /* transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors */ /* is updated by postmultiplying it with Z. */ /* T must be in Schur canonical form (as returned by DHSEQR), that is, */ /* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */ /* 2-by-2 diagonal block has its diagonal elements equal and its */ /* off-diagonal elements of opposite sign. */ /* Arguments */ /* ========= */ /* COMPQ (input) CHARACTER*1 */ /* = 'V': update the matrix Q of Schur vectors; */ /* = 'N': do not update Q. */ /* N (input) INTEGER */ /* The order of the matrix T. N >= 0. */ /* T (input/output) DOUBLE PRECISION array, dimension (LDT,N) */ /* On entry, the upper quasi-triangular matrix T, in Schur */ /* Schur canonical form. */ /* On exit, the reordered upper quasi-triangular matrix, again */ /* in Schur canonical form. */ /* LDT (input) INTEGER */ /* The leading dimension of the array T. LDT >= max(1,N). */ /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */ /* On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */ /* On exit, if COMPQ = 'V', Q has been postmultiplied by the */ /* orthogonal transformation matrix Z which reorders T. */ /* If COMPQ = 'N', Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* IFST (input/output) INTEGER */ /* ILST (input/output) INTEGER */ /* Specify the reordering of the diagonal blocks of T. */ /* The block with row index IFST is moved to row ILST, by a */ /* sequence of transpositions between adjacent blocks. */ /* On exit, if IFST pointed on entry to the second row of a */ /* 2-by-2 block, it is changed to point to the first row; ILST */ /* always points to the first row of the block in its final */ /* position (which may differ from its input value by +1 or -1). */ /* 1 <= IFST <= N; 1 <= ILST <= N. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* = 1: two adjacent blocks were too close to swap (the problem */ /* is very ill-conditioned); T may have been partially */ /* reordered, and ILST points to the first row of the */ /* current position of the block being moved. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode and test the input arguments. */ /* Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ *info = 0; wantq = lsame_(compq, "V"); if (! wantq && ! lsame_(compq, "N")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldt < max(1,*n)) { *info = -4; } else if (*ldq < 1 || wantq && *ldq < max(1,*n)) { *info = -6; } else if (*ifst < 1 || *ifst > *n) { *info = -7; } else if (*ilst < 1 || *ilst > *n) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DTREXC", &i__1); return 0; } /* Quick return if possible */ if (*n <= 1) { return 0; } /* Determine the first row of specified block */ /* and find out it is 1 by 1 or 2 by 2. */ if (*ifst > 1) { if (t[*ifst + (*ifst - 1) * t_dim1] != 0.) { --(*ifst); } } nbf = 1; if (*ifst < *n) { if (t[*ifst + 1 + *ifst * t_dim1] != 0.) { nbf = 2; } } /* Determine the first row of the final block */ /* and find out it is 1 by 1 or 2 by 2. */ if (*ilst > 1) { if (t[*ilst + (*ilst - 1) * t_dim1] != 0.) { --(*ilst); } } nbl = 1; if (*ilst < *n) { if (t[*ilst + 1 + *ilst * t_dim1] != 0.) { nbl = 2; } } if (*ifst == *ilst) { return 0; } if (*ifst < *ilst) { /* Update ILST */ if (nbf == 2 && nbl == 1) { --(*ilst); } if (nbf == 1 && nbl == 2) { ++(*ilst); } here = *ifst; L10: /* Swap block with next one below */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here + nbf + 1 <= *n) { if (t[here + nbf + 1 + (here + nbf) * t_dim1] != 0.) { nbnext = 2; } } dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &here, & nbf, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which */ /* must be swapped individually */ nbnext = 1; if (here + 3 <= *n) { if (t[here + 3 + (here + 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here + 1; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); ++here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + 2 + (here + 1) * t_dim1] == 0.) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += 2; } else { /* 2 by 2 Block did split */ dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here + 1; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += 2; } } } if (here < *ilst) { goto L10; } } else { here = *ifst; L20: /* Swap block with next one above */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here - nbnext; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &nbf, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here -= nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which */ /* must be swapped individually */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here - nbnext; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &nbnext, &c__1, &work[1], info); --here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + (here - 1) * t_dim1] == 0.) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ i__1 = here - 1; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__2, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += -2; } else { /* 2 by 2 Block did split */ dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here - 1; dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += -2; } } } if (here > *ilst) { goto L20; } } *ilst = here; return 0; /* End of DTREXC */ } /* dtrexc_ */