/* dstevx.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dstevx_(char *jobz, char *range, integer *n, doublereal * d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *iwork, integer *ifail, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, jj; doublereal eps, vll, vuu, tmp1; integer imax; doublereal rmin, rmax; logical test; doublereal tnrm; integer itmp1; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); char order[1]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); logical wantz; extern doublereal dlamch_(char *); logical alleig, indeig; integer iscale, indibl; logical valeig; doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); integer indisp; extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *); integer indiwo; extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); integer indwrk; extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer nsplit; doublereal smlnum; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSTEVX computes selected eigenvalues and, optionally, eigenvectors */ /* of a real symmetric tridiagonal matrix A. Eigenvalues and */ /* eigenvectors can be selected by specifying either a range of values */ /* or a range of indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found. */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found. */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* N (input) INTEGER */ /* The order of the matrix. N >= 0. */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the n diagonal elements of the tridiagonal matrix */ /* A. */ /* On exit, D may be multiplied by a constant factor chosen */ /* to avoid over/underflow in computing the eigenvalues. */ /* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */ /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ /* matrix A in elements 1 to N-1 of E. */ /* On exit, E may be multiplied by a constant factor chosen */ /* to avoid over/underflow in computing the eigenvalues. */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) DOUBLE PRECISION */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less */ /* than or equal to zero, then EPS*|T| will be used in */ /* its place, where |T| is the 1-norm of the tridiagonal */ /* matrix. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*DLAMCH('S'). */ /* See "Computing Small Singular Values of Bidiagonal Matrices */ /* with Guaranteed High Relative Accuracy," by Demmel and */ /* Kahan, LAPACK Working Note #3. */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* The first M elements contain the selected eigenvalues in */ /* ascending order. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* If an eigenvector fails to converge (INFO > 0), then that */ /* column of Z contains the latest approximation to the */ /* eigenvector, and the index of the eigenvector is returned */ /* in IFAIL. If JOBZ = 'N', then Z is not referenced. */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (5*N) */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, then i eigenvectors failed to converge. */ /* Their indices are stored in array IFAIL. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (*n < 0) { *info = -3; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -7; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -8; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -9; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -14; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSTEVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } if (*n == 1) { if (alleig || indeig) { *m = 1; w[1] = d__[1]; } else { if (*vl < d__[1] && *vu >= d__[1]) { *m = 1; w[1] = d__[1]; } } if (wantz) { z__[z_dim1 + 1] = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); rmax = min(d__1,d__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; if (valeig) { vll = *vl; vuu = *vu; } else { vll = 0.; vuu = 0.; } tnrm = dlanst_("M", n, &d__[1], &e[1]); if (tnrm > 0. && tnrm < rmin) { iscale = 1; sigma = rmin / tnrm; } else if (tnrm > rmax) { iscale = 1; sigma = rmax / tnrm; } if (iscale == 1) { dscal_(n, &sigma, &d__[1], &c__1); i__1 = *n - 1; dscal_(&i__1, &sigma, &e[1], &c__1); if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* If all eigenvalues are desired and ABSTOL is less than zero, then */ /* call DSTERF or SSTEQR. If this fails for some eigenvalue, then */ /* try DSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.) { dcopy_(n, &d__[1], &c__1, &w[1], &c__1); i__1 = *n - 1; dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1); indwrk = *n + 1; if (! wantz) { dsterf_(n, &w[1], &work[1], info); } else { dsteqr_("I", n, &w[1], &work[1], &z__[z_offset], ldz, &work[ indwrk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L20; } *info = 0; } /* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indwrk = 1; indibl = 1; indisp = indibl + *n; indiwo = indisp + *n; dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, & nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], & iwork[indiwo], info); if (wantz) { dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], & z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &ifail[1], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ L20: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L30: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L40: */ } } return 0; /* End of DSTEVX */ } /* dstevx_ */