/* dorghr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int dorghr_(integer *n, integer *ilo, integer *ihi, doublereal *a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, nb, nh, iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DORGHR generates a real orthogonal matrix Q which is defined as the */ /* product of IHI-ILO elementary reflectors of order N, as returned by */ /* DGEHRD: */ /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix Q. N >= 0. */ /* ILO (input) INTEGER */ /* IHI (input) INTEGER */ /* ILO and IHI must have the same values as in the previous call */ /* of DGEHRD. Q is equal to the unit matrix except in the */ /* submatrix Q(ilo+1:ihi,ilo+1:ihi). */ /* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by DGEHRD. */ /* On exit, the N-by-N orthogonal matrix Q. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* TAU (input) DOUBLE PRECISION array, dimension (N-1) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by DGEHRD. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= IHI-ILO. */ /* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < max(1,nh) && ! lquery) { *info = -8; } if (*info == 0) { nb = ilaenv_(&c__1, "DORGQR", " ", &nh, &nh, &nh, &c_n1); lwkopt = max(1,nh) * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DORGHR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.; return 0; } /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first ilo and the last n-ihi */ /* rows and columns to those of the unit matrix */ i__1 = *ilo + 1; for (j = *ihi; j >= i__1; --j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L10: */ } i__2 = *ihi; for (i__ = j + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L20: */ } i__2 = *n; for (i__ = *ihi + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L30: */ } /* L40: */ } i__1 = *ilo; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L50: */ } a[j + j * a_dim1] = 1.; /* L60: */ } i__1 = *n; for (j = *ihi + 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L70: */ } a[j + j * a_dim1] = 1.; /* L80: */ } if (nh > 0) { /* Generate Q(ilo+1:ihi,ilo+1:ihi) */ dorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[* ilo], &work[1], lwork, &iinfo); } work[1] = (doublereal) lwkopt; return 0; /* End of DORGHR */ } /* dorghr_ */