/* dlantp.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal dlantp_(char *norm, char *uplo, char *diag, integer *n, doublereal *ap, doublereal *work) { /* System generated locals */ integer i__1, i__2; doublereal ret_val, d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k; doublereal sum, scale; logical udiag; extern logical lsame_(char *, char *); doublereal value; extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLANTP returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of a */ /* triangular matrix A, supplied in packed form. */ /* Description */ /* =========== */ /* DLANTP returns the value */ /* DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in DLANTP as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, DLANTP is */ /* set to zero. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* Note that when DIAG = 'U', the elements of the array AP */ /* corresponding to the diagonal elements of the matrix A are */ /* not referenced, but are assumed to be one. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ /* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */ /* referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --ap; /* Function Body */ if (*n == 0) { value = 0.; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ k = 1; if (lsame_(diag, "U")) { value = 1.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + j - 2; for (i__ = k; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); value = max(d__2,d__3); /* L10: */ } k += j; /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + *n - j; for (i__ = k + 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); value = max(d__2,d__3); /* L30: */ } k = k + *n - j + 1; /* L40: */ } } } else { value = 0.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + j - 1; for (i__ = k; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); value = max(d__2,d__3); /* L50: */ } k += j; /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + *n - j; for (i__ = k; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); value = max(d__2,d__3); /* L70: */ } k = k + *n - j + 1; /* L80: */ } } } } else if (lsame_(norm, "O") || *(unsigned char *) norm == '1') { /* Find norm1(A). */ value = 0.; k = 1; udiag = lsame_(diag, "U"); if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag) { sum = 1.; i__2 = k + j - 2; for (i__ = k; i__ <= i__2; ++i__) { sum += (d__1 = ap[i__], abs(d__1)); /* L90: */ } } else { sum = 0.; i__2 = k + j - 1; for (i__ = k; i__ <= i__2; ++i__) { sum += (d__1 = ap[i__], abs(d__1)); /* L100: */ } } k += j; value = max(value,sum); /* L110: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag) { sum = 1.; i__2 = k + *n - j; for (i__ = k + 1; i__ <= i__2; ++i__) { sum += (d__1 = ap[i__], abs(d__1)); /* L120: */ } } else { sum = 0.; i__2 = k + *n - j; for (i__ = k; i__ <= i__2; ++i__) { sum += (d__1 = ap[i__], abs(d__1)); /* L130: */ } } k = k + *n - j + 1; value = max(value,sum); /* L140: */ } } } else if (lsame_(norm, "I")) { /* Find normI(A). */ k = 1; if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.; /* L150: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = ap[k], abs(d__1)); ++k; /* L160: */ } ++k; /* L170: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L180: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = ap[k], abs(d__1)); ++k; /* L190: */ } /* L200: */ } } } else { if (lsame_(diag, "U")) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.; /* L210: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { ++k; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { work[i__] += (d__1 = ap[k], abs(d__1)); ++k; /* L220: */ } /* L230: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L240: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { work[i__] += (d__1 = ap[k], abs(d__1)); ++k; /* L250: */ } /* L260: */ } } } value = 0.; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = value, d__2 = work[i__]; value = max(d__1,d__2); /* L270: */ } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { scale = 1.; sum = (doublereal) (*n); k = 2; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); k += j; /* L280: */ } } else { scale = 0.; sum = 1.; k = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &ap[k], &c__1, &scale, &sum); k += j; /* L290: */ } } } else { if (lsame_(diag, "U")) { scale = 1.; sum = (doublereal) (*n); k = 2; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = *n - j; dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); k = k + *n - j + 1; /* L300: */ } } else { scale = 0.; sum = 1.; k = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n - j + 1; dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); k = k + *n - j + 1; /* L310: */ } } } value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of DLANTP */ } /* dlantp_ */