/* csyr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int csyr_(char *uplo, integer *n, complex *alpha, complex *x, integer *incx, complex *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2; /* Local variables */ integer i__, j, ix, jx, kx, info; complex temp; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSYR performs the symmetric rank 1 operation */ /* A := alpha*x*( x' ) + A, */ /* where alpha is a complex scalar, x is an n element vector and A is an */ /* n by n symmetric matrix. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the array A is to be referenced as */ /* follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of A */ /* is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of A */ /* is to be referenced. */ /* Unchanged on exit. */ /* N (input) INTEGER */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA (input) COMPLEX */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* X (input) COMPLEX array, dimension at least */ /* ( 1 + ( N - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the N- */ /* element vector x. */ /* Unchanged on exit. */ /* INCX (input) INTEGER */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* A (input/output) COMPLEX array, dimension ( LDA, N ) */ /* Before entry, with UPLO = 'U' or 'u', the leading n by n */ /* upper triangular part of the array A must contain the upper */ /* triangular part of the symmetric matrix and the strictly */ /* lower triangular part of A is not referenced. On exit, the */ /* upper triangular part of the array A is overwritten by the */ /* upper triangular part of the updated matrix. */ /* Before entry, with UPLO = 'L' or 'l', the leading n by n */ /* lower triangular part of the array A must contain the lower */ /* triangular part of the symmetric matrix and the strictly */ /* upper triangular part of A is not referenced. On exit, the */ /* lower triangular part of the array A is overwritten by the */ /* lower triangular part of the updated matrix. */ /* LDA (input) INTEGER */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* max( 1, N ). */ /* Unchanged on exit. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --x; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*lda < max(1,*n)) { info = 7; } if (info != 0) { xerbla_("CSYR ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || alpha->r == 0.f && alpha->i == 0.f) { return 0; } /* Set the start point in X if the increment is not unity. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through the triangular part */ /* of A. */ if (lsame_(uplo, "U")) { /* Form A when A is stored in upper triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = j; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = q__1.r, temp.i = q__1.i; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L10: */ } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = jx; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = q__1.r, temp.i = q__1.i; ix = kx; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; ix += *incx; /* L30: */ } } jx += *incx; /* L40: */ } } } else { /* Form A when A is stored in lower triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = j; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = q__1.r, temp.i = q__1.i; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = jx; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = q__1.r, temp.i = q__1.i; ix = jx; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; ix += *incx; /* L70: */ } } jx += *incx; /* L80: */ } } } return 0; /* End of CSYR */ } /* csyr_ */