/* clags2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int clags2_(logical *upper, real *a1, complex *a2, real *a3, real *b1, complex *b2, real *b3, real *csu, complex *snu, real *csv, complex *snv, real *csq, complex *snq) { /* System generated locals */ real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8; complex q__1, q__2, q__3, q__4, q__5; /* Builtin functions */ double c_abs(complex *), r_imag(complex *); void r_cnjg(complex *, complex *); /* Local variables */ real a; complex b, c__; real d__; complex r__, d1; real s1, s2, fb, fc; complex ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22; real csl, csr, snl, snr, aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r; extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *), clartg_(complex *, complex *, real *, complex *, complex *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such */ /* that if ( UPPER ) then */ /* U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) */ /* ( 0 A3 ) ( x x ) */ /* and */ /* V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) */ /* ( 0 B3 ) ( x x ) */ /* or if ( .NOT.UPPER ) then */ /* U'*A*Q = U'*( A1 0 )*Q = ( x x ) */ /* ( A2 A3 ) ( 0 x ) */ /* and */ /* V'*B*Q = V'*( B1 0 )*Q = ( x x ) */ /* ( B2 B3 ) ( 0 x ) */ /* where */ /* U = ( CSU SNU ), V = ( CSV SNV ), */ /* ( -CONJG(SNU) CSU ) ( -CONJG(SNV) CSV ) */ /* Q = ( CSQ SNQ ) */ /* ( -CONJG(SNQ) CSQ ) */ /* Z' denotes the conjugate transpose of Z. */ /* The rows of the transformed A and B are parallel. Moreover, if the */ /* input 2-by-2 matrix A is not zero, then the transformed (1,1) entry */ /* of A is not zero. If the input matrices A and B are both not zero, */ /* then the transformed (2,2) element of B is not zero, except when the */ /* first rows of input A and B are parallel and the second rows are */ /* zero. */ /* Arguments */ /* ========= */ /* UPPER (input) LOGICAL */ /* = .TRUE.: the input matrices A and B are upper triangular. */ /* = .FALSE.: the input matrices A and B are lower triangular. */ /* A1 (input) REAL */ /* A2 (input) COMPLEX */ /* A3 (input) REAL */ /* On entry, A1, A2 and A3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix A. */ /* B1 (input) REAL */ /* B2 (input) COMPLEX */ /* B3 (input) REAL */ /* On entry, B1, B2 and B3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix B. */ /* CSU (output) REAL */ /* SNU (output) COMPLEX */ /* The desired unitary matrix U. */ /* CSV (output) REAL */ /* SNV (output) COMPLEX */ /* The desired unitary matrix V. */ /* CSQ (output) REAL */ /* SNQ (output) COMPLEX */ /* The desired unitary matrix Q. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ if (*upper) { /* Input matrices A and B are upper triangular matrices */ /* Form matrix C = A*adj(B) = ( a b ) */ /* ( 0 d ) */ a = *a1 * *b3; d__ = *a3 * *b1; q__2.r = *b1 * a2->r, q__2.i = *b1 * a2->i; q__3.r = *a1 * b2->r, q__3.i = *a1 * b2->i; q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; b.r = q__1.r, b.i = q__1.i; fb = c_abs(&b); /* Transform complex 2-by-2 matrix C to real matrix by unitary */ /* diagonal matrix diag(1,D1). */ d1.r = 1.f, d1.i = 0.f; if (fb != 0.f) { q__1.r = b.r / fb, q__1.i = b.i / fb; d1.r = q__1.r, d1.i = q__1.i; } /* The SVD of real 2 by 2 triangular C */ /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */ slasv2_(&a, &fb, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (dabs(csl) >= dabs(snl) || dabs(csr) >= dabs(snr)) { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,2) element of |U|'*|A| and |V|'*|B|. */ ua11r = csl * *a1; q__2.r = csl * a2->r, q__2.i = csl * a2->i; q__4.r = snl * d1.r, q__4.i = snl * d1.i; q__3.r = *a3 * q__4.r, q__3.i = *a3 * q__4.i; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; ua12.r = q__1.r, ua12.i = q__1.i; vb11r = csr * *b1; q__2.r = csr * b2->r, q__2.i = csr * b2->i; q__4.r = snr * d1.r, q__4.i = snr * d1.i; q__3.r = *b3 * q__4.r, q__3.i = *b3 * q__4.i; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; vb12.r = q__1.r, vb12.i = q__1.i; aua12 = dabs(csl) * ((r__1 = a2->r, dabs(r__1)) + (r__2 = r_imag( a2), dabs(r__2))) + dabs(snl) * dabs(*a3); avb12 = dabs(csr) * ((r__1 = b2->r, dabs(r__1)) + (r__2 = r_imag( b2), dabs(r__2))) + dabs(snr) * dabs(*b3); /* zero (1,2) elements of U'*A and V'*B */ if (dabs(ua11r) + ((r__1 = ua12.r, dabs(r__1)) + (r__2 = r_imag(& ua12), dabs(r__2))) == 0.f) { q__2.r = vb11r, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &vb12); clartg_(&q__1, &q__3, csq, snq, &r__); } else if (dabs(vb11r) + ((r__1 = vb12.r, dabs(r__1)) + (r__2 = r_imag(&vb12), dabs(r__2))) == 0.f) { q__2.r = ua11r, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &ua12); clartg_(&q__1, &q__3, csq, snq, &r__); } else if (aua12 / (dabs(ua11r) + ((r__1 = ua12.r, dabs(r__1)) + ( r__2 = r_imag(&ua12), dabs(r__2)))) <= avb12 / (dabs( vb11r) + ((r__3 = vb12.r, dabs(r__3)) + (r__4 = r_imag(& vb12), dabs(r__4))))) { q__2.r = ua11r, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &ua12); clartg_(&q__1, &q__3, csq, snq, &r__); } else { q__2.r = vb11r, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &vb12); clartg_(&q__1, &q__3, csq, snq, &r__); } *csu = csl; q__2.r = -d1.r, q__2.i = -d1.i; q__1.r = snl * q__2.r, q__1.i = snl * q__2.i; snu->r = q__1.r, snu->i = q__1.i; *csv = csr; q__2.r = -d1.r, q__2.i = -d1.i; q__1.r = snr * q__2.r, q__1.i = snr * q__2.i; snv->r = q__1.r, snv->i = q__1.i; } else { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,2) element of |U|'*|A| and |V|'*|B|. */ r_cnjg(&q__4, &d1); q__3.r = -q__4.r, q__3.i = -q__4.i; q__2.r = snl * q__3.r, q__2.i = snl * q__3.i; q__1.r = *a1 * q__2.r, q__1.i = *a1 * q__2.i; ua21.r = q__1.r, ua21.i = q__1.i; r_cnjg(&q__5, &d1); q__4.r = -q__5.r, q__4.i = -q__5.i; q__3.r = snl * q__4.r, q__3.i = snl * q__4.i; q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i + q__3.i * a2->r; r__1 = csl * *a3; q__1.r = q__2.r + r__1, q__1.i = q__2.i; ua22.r = q__1.r, ua22.i = q__1.i; r_cnjg(&q__4, &d1); q__3.r = -q__4.r, q__3.i = -q__4.i; q__2.r = snr * q__3.r, q__2.i = snr * q__3.i; q__1.r = *b1 * q__2.r, q__1.i = *b1 * q__2.i; vb21.r = q__1.r, vb21.i = q__1.i; r_cnjg(&q__5, &d1); q__4.r = -q__5.r, q__4.i = -q__5.i; q__3.r = snr * q__4.r, q__3.i = snr * q__4.i; q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i + q__3.i * b2->r; r__1 = csr * *b3; q__1.r = q__2.r + r__1, q__1.i = q__2.i; vb22.r = q__1.r, vb22.i = q__1.i; aua22 = dabs(snl) * ((r__1 = a2->r, dabs(r__1)) + (r__2 = r_imag( a2), dabs(r__2))) + dabs(csl) * dabs(*a3); avb22 = dabs(snr) * ((r__1 = b2->r, dabs(r__1)) + (r__2 = r_imag( b2), dabs(r__2))) + dabs(csr) * dabs(*b3); /* zero (2,2) elements of U'*A and V'*B, and then swap. */ if ((r__1 = ua21.r, dabs(r__1)) + (r__2 = r_imag(&ua21), dabs( r__2)) + ((r__3 = ua22.r, dabs(r__3)) + (r__4 = r_imag(& ua22), dabs(r__4))) == 0.f) { r_cnjg(&q__2, &vb21); q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &vb22); clartg_(&q__1, &q__3, csq, snq, &r__); } else if ((r__1 = vb21.r, dabs(r__1)) + (r__2 = r_imag(&vb21), dabs(r__2)) + c_abs(&vb22) == 0.f) { r_cnjg(&q__2, &ua21); q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &ua22); clartg_(&q__1, &q__3, csq, snq, &r__); } else if (aua22 / ((r__1 = ua21.r, dabs(r__1)) + (r__2 = r_imag(& ua21), dabs(r__2)) + ((r__3 = ua22.r, dabs(r__3)) + (r__4 = r_imag(&ua22), dabs(r__4)))) <= avb22 / ((r__5 = vb21.r, dabs(r__5)) + (r__6 = r_imag(&vb21), dabs(r__6)) + (( r__7 = vb22.r, dabs(r__7)) + (r__8 = r_imag(&vb22), dabs( r__8))))) { r_cnjg(&q__2, &ua21); q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &ua22); clartg_(&q__1, &q__3, csq, snq, &r__); } else { r_cnjg(&q__2, &vb21); q__1.r = -q__2.r, q__1.i = -q__2.i; r_cnjg(&q__3, &vb22); clartg_(&q__1, &q__3, csq, snq, &r__); } *csu = snl; q__1.r = csl * d1.r, q__1.i = csl * d1.i; snu->r = q__1.r, snu->i = q__1.i; *csv = snr; q__1.r = csr * d1.r, q__1.i = csr * d1.i; snv->r = q__1.r, snv->i = q__1.i; } } else { /* Input matrices A and B are lower triangular matrices */ /* Form matrix C = A*adj(B) = ( a 0 ) */ /* ( c d ) */ a = *a1 * *b3; d__ = *a3 * *b1; q__2.r = *b3 * a2->r, q__2.i = *b3 * a2->i; q__3.r = *a3 * b2->r, q__3.i = *a3 * b2->i; q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; c__.r = q__1.r, c__.i = q__1.i; fc = c_abs(&c__); /* Transform complex 2-by-2 matrix C to real matrix by unitary */ /* diagonal matrix diag(d1,1). */ d1.r = 1.f, d1.i = 0.f; if (fc != 0.f) { q__1.r = c__.r / fc, q__1.i = c__.i / fc; d1.r = q__1.r, d1.i = q__1.i; } /* The SVD of real 2 by 2 triangular C */ /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */ slasv2_(&a, &fc, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (dabs(csr) >= dabs(snr) || dabs(csl) >= dabs(snl)) { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,1) element of |U|'*|A| and |V|'*|B|. */ q__4.r = -d1.r, q__4.i = -d1.i; q__3.r = snr * q__4.r, q__3.i = snr * q__4.i; q__2.r = *a1 * q__3.r, q__2.i = *a1 * q__3.i; q__5.r = csr * a2->r, q__5.i = csr * a2->i; q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; ua21.r = q__1.r, ua21.i = q__1.i; ua22r = csr * *a3; q__4.r = -d1.r, q__4.i = -d1.i; q__3.r = snl * q__4.r, q__3.i = snl * q__4.i; q__2.r = *b1 * q__3.r, q__2.i = *b1 * q__3.i; q__5.r = csl * b2->r, q__5.i = csl * b2->i; q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; vb21.r = q__1.r, vb21.i = q__1.i; vb22r = csl * *b3; aua21 = dabs(snr) * dabs(*a1) + dabs(csr) * ((r__1 = a2->r, dabs( r__1)) + (r__2 = r_imag(a2), dabs(r__2))); avb21 = dabs(snl) * dabs(*b1) + dabs(csl) * ((r__1 = b2->r, dabs( r__1)) + (r__2 = r_imag(b2), dabs(r__2))); /* zero (2,1) elements of U'*A and V'*B. */ if ((r__1 = ua21.r, dabs(r__1)) + (r__2 = r_imag(&ua21), dabs( r__2)) + dabs(ua22r) == 0.f) { q__1.r = vb22r, q__1.i = 0.f; clartg_(&q__1, &vb21, csq, snq, &r__); } else if ((r__1 = vb21.r, dabs(r__1)) + (r__2 = r_imag(&vb21), dabs(r__2)) + dabs(vb22r) == 0.f) { q__1.r = ua22r, q__1.i = 0.f; clartg_(&q__1, &ua21, csq, snq, &r__); } else if (aua21 / ((r__1 = ua21.r, dabs(r__1)) + (r__2 = r_imag(& ua21), dabs(r__2)) + dabs(ua22r)) <= avb21 / ((r__3 = vb21.r, dabs(r__3)) + (r__4 = r_imag(&vb21), dabs(r__4)) + dabs(vb22r))) { q__1.r = ua22r, q__1.i = 0.f; clartg_(&q__1, &ua21, csq, snq, &r__); } else { q__1.r = vb22r, q__1.i = 0.f; clartg_(&q__1, &vb21, csq, snq, &r__); } *csu = csr; r_cnjg(&q__3, &d1); q__2.r = -q__3.r, q__2.i = -q__3.i; q__1.r = snr * q__2.r, q__1.i = snr * q__2.i; snu->r = q__1.r, snu->i = q__1.i; *csv = csl; r_cnjg(&q__3, &d1); q__2.r = -q__3.r, q__2.i = -q__3.i; q__1.r = snl * q__2.r, q__1.i = snl * q__2.i; snv->r = q__1.r, snv->i = q__1.i; } else { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,1) element of |U|'*|A| and |V|'*|B|. */ r__1 = csr * *a1; r_cnjg(&q__4, &d1); q__3.r = snr * q__4.r, q__3.i = snr * q__4.i; q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i + q__3.i * a2->r; q__1.r = r__1 + q__2.r, q__1.i = q__2.i; ua11.r = q__1.r, ua11.i = q__1.i; r_cnjg(&q__3, &d1); q__2.r = snr * q__3.r, q__2.i = snr * q__3.i; q__1.r = *a3 * q__2.r, q__1.i = *a3 * q__2.i; ua12.r = q__1.r, ua12.i = q__1.i; r__1 = csl * *b1; r_cnjg(&q__4, &d1); q__3.r = snl * q__4.r, q__3.i = snl * q__4.i; q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i + q__3.i * b2->r; q__1.r = r__1 + q__2.r, q__1.i = q__2.i; vb11.r = q__1.r, vb11.i = q__1.i; r_cnjg(&q__3, &d1); q__2.r = snl * q__3.r, q__2.i = snl * q__3.i; q__1.r = *b3 * q__2.r, q__1.i = *b3 * q__2.i; vb12.r = q__1.r, vb12.i = q__1.i; aua11 = dabs(csr) * dabs(*a1) + dabs(snr) * ((r__1 = a2->r, dabs( r__1)) + (r__2 = r_imag(a2), dabs(r__2))); avb11 = dabs(csl) * dabs(*b1) + dabs(snl) * ((r__1 = b2->r, dabs( r__1)) + (r__2 = r_imag(b2), dabs(r__2))); /* zero (1,1) elements of U'*A and V'*B, and then swap. */ if ((r__1 = ua11.r, dabs(r__1)) + (r__2 = r_imag(&ua11), dabs( r__2)) + ((r__3 = ua12.r, dabs(r__3)) + (r__4 = r_imag(& ua12), dabs(r__4))) == 0.f) { clartg_(&vb12, &vb11, csq, snq, &r__); } else if ((r__1 = vb11.r, dabs(r__1)) + (r__2 = r_imag(&vb11), dabs(r__2)) + ((r__3 = vb12.r, dabs(r__3)) + (r__4 = r_imag(&vb12), dabs(r__4))) == 0.f) { clartg_(&ua12, &ua11, csq, snq, &r__); } else if (aua11 / ((r__1 = ua11.r, dabs(r__1)) + (r__2 = r_imag(& ua11), dabs(r__2)) + ((r__3 = ua12.r, dabs(r__3)) + (r__4 = r_imag(&ua12), dabs(r__4)))) <= avb11 / ((r__5 = vb11.r, dabs(r__5)) + (r__6 = r_imag(&vb11), dabs(r__6)) + (( r__7 = vb12.r, dabs(r__7)) + (r__8 = r_imag(&vb12), dabs( r__8))))) { clartg_(&ua12, &ua11, csq, snq, &r__); } else { clartg_(&vb12, &vb11, csq, snq, &r__); } *csu = snr; r_cnjg(&q__2, &d1); q__1.r = csr * q__2.r, q__1.i = csr * q__2.i; snu->r = q__1.r, snu->i = q__1.i; *csv = snl; r_cnjg(&q__2, &d1); q__1.r = csl * q__2.r, q__1.i = csl * q__2.i; snv->r = q__1.r, snv->i = q__1.i; } } return 0; /* End of CLAGS2 */ } /* clags2_ */