/* chpsvx.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int chpsvx_(char *fact, char *uplo, integer *n, integer * nrhs, complex *ap, complex *afp, integer *ipiv, complex *b, integer * ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, real *rwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); real anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); extern doublereal clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *); logical nofact; extern /* Subroutine */ int chpcon_(char *, integer *, complex *, integer *, real *, real *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), chprfs_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real * , integer *), chptrf_(char *, integer *, complex *, integer *, integer *), chptrs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHPSVX uses the diagonal pivoting factorization A = U*D*U**H or */ /* A = L*D*L**H to compute the solution to a complex system of linear */ /* equations A * X = B, where A is an N-by-N Hermitian matrix stored */ /* in packed format and X and B are N-by-NRHS matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'N', the diagonal pivoting method is used to factor A as */ /* A = U * D * U**H, if UPLO = 'U', or */ /* A = L * D * L**H, if UPLO = 'L', */ /* where U (or L) is a product of permutation and unit upper (lower) */ /* triangular matrices and D is Hermitian and block diagonal with */ /* 1-by-1 and 2-by-2 diagonal blocks. */ /* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */ /* returns with INFO = i. Otherwise, the factored form of A is used */ /* to estimate the condition number of the matrix A. If the */ /* reciprocal of the condition number is less than machine precision, */ /* INFO = N+1 is returned as a warning, but the routine still goes on */ /* to solve for X and compute error bounds as described below. */ /* 3. The system of equations is solved for X using the factored form */ /* of A. */ /* 4. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of A has been */ /* supplied on entry. */ /* = 'F': On entry, AFP and IPIV contain the factored form of */ /* A. AFP and IPIV will not be modified. */ /* = 'N': The matrix A will be copied to AFP and factored. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The upper or lower triangle of the Hermitian matrix A, packed */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* See below for further details. */ /* AFP (input or output) COMPLEX array, dimension (N*(N+1)/2) */ /* If FACT = 'F', then AFP is an input argument and on entry */ /* contains the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as */ /* a packed triangular matrix in the same storage format as A. */ /* If FACT = 'N', then AFP is an output argument and on exit */ /* contains the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as */ /* a packed triangular matrix in the same storage format as A. */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CHPTRF. */ /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ /* interchanged and D(k,k) is a 1-by-1 diagonal block. */ /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CHPTRF. */ /* B (input) COMPLEX array, dimension (LDB,NRHS) */ /* The N-by-NRHS right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) COMPLEX array, dimension (LDX,NRHS) */ /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The estimate of the reciprocal condition number of the matrix */ /* A. If RCOND is less than the machine precision (in */ /* particular, if RCOND = 0), the matrix is singular to working */ /* precision. This condition is indicated by a return code of */ /* INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: D(i,i) is exactly zero. The factorization */ /* has been completed but the factor D is exactly */ /* singular, so the solution and error bounds could */ /* not be computed. RCOND = 0 is returned. */ /* = N+1: D is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* Further Details */ /* =============== */ /* The packed storage scheme is illustrated by the following example */ /* when N = 4, UPLO = 'U': */ /* Two-dimensional storage of the Hermitian matrix A: */ /* a11 a12 a13 a14 */ /* a22 a23 a24 */ /* a33 a34 (aij = conjg(aji)) */ /* a44 */ /* Packed storage of the upper triangle of A: */ /* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --afp; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldx < max(1,*n)) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("CHPSVX", &i__1); return 0; } if (nofact) { /* Compute the factorization A = U*D*U' or A = L*D*L'. */ i__1 = *n * (*n + 1) / 2; ccopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1); chptrf_(uplo, n, &afp[1], &ipiv[1], info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = clanhp_("I", uplo, n, &ap[1], &rwork[1]); /* Compute the reciprocal of the condition number of A. */ chpcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); chptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ chprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[ x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } return 0; /* End of CHPSVX */ } /* chpsvx_ */