/* cgttrf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cgttrf_(integer *n, complex *dl, complex *d__, complex * du, complex *du2, integer *ipiv, integer *info) { /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; complex q__1, q__2; /* Builtin functions */ double r_imag(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ integer i__; complex fact, temp; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGTTRF computes an LU factorization of a complex tridiagonal matrix A */ /* using elimination with partial pivoting and row interchanges. */ /* The factorization has the form */ /* A = L * U */ /* where L is a product of permutation and unit lower bidiagonal */ /* matrices and U is upper triangular with nonzeros in only the main */ /* diagonal and first two superdiagonals. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. */ /* DL (input/output) COMPLEX array, dimension (N-1) */ /* On entry, DL must contain the (n-1) sub-diagonal elements of */ /* A. */ /* On exit, DL is overwritten by the (n-1) multipliers that */ /* define the matrix L from the LU factorization of A. */ /* D (input/output) COMPLEX array, dimension (N) */ /* On entry, D must contain the diagonal elements of A. */ /* On exit, D is overwritten by the n diagonal elements of the */ /* upper triangular matrix U from the LU factorization of A. */ /* DU (input/output) COMPLEX array, dimension (N-1) */ /* On entry, DU must contain the (n-1) super-diagonal elements */ /* of A. */ /* On exit, DU is overwritten by the (n-1) elements of the first */ /* super-diagonal of U. */ /* DU2 (output) COMPLEX array, dimension (N-2) */ /* On exit, DU2 is overwritten by the (n-2) elements of the */ /* second super-diagonal of U. */ /* IPIV (output) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ /* interchanged with row IPIV(i). IPIV(i) will always be either */ /* i or i+1; IPIV(i) = i indicates a row interchange was not */ /* required. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -k, the k-th argument had an illegal value */ /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, and division by zero will occur if it is used */ /* to solve a system of equations. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --ipiv; --du2; --du; --d__; --dl; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; i__1 = -(*info); xerbla_("CGTTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Initialize IPIV(i) = i and DU2(i) = 0 */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ipiv[i__] = i__; /* L10: */ } i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; du2[i__2].r = 0.f, du2[i__2].i = 0.f; /* L20: */ } i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; if ((r__1 = d__[i__2].r, dabs(r__1)) + (r__2 = r_imag(&d__[i__]), dabs(r__2)) >= (r__3 = dl[i__3].r, dabs(r__3)) + (r__4 = r_imag(&dl[i__]), dabs(r__4))) { /* No row interchange required, eliminate DL(I) */ i__2 = i__; if ((r__1 = d__[i__2].r, dabs(r__1)) + (r__2 = r_imag(&d__[i__]), dabs(r__2)) != 0.f) { c_div(&q__1, &dl[i__], &d__[i__]); fact.r = q__1.r, fact.i = q__1.i; i__2 = i__; dl[i__2].r = fact.r, dl[i__2].i = fact.i; i__2 = i__ + 1; i__3 = i__ + 1; i__4 = i__; q__2.r = fact.r * du[i__4].r - fact.i * du[i__4].i, q__2.i = fact.r * du[i__4].i + fact.i * du[i__4].r; q__1.r = d__[i__3].r - q__2.r, q__1.i = d__[i__3].i - q__2.i; d__[i__2].r = q__1.r, d__[i__2].i = q__1.i; } } else { /* Interchange rows I and I+1, eliminate DL(I) */ c_div(&q__1, &d__[i__], &dl[i__]); fact.r = q__1.r, fact.i = q__1.i; i__2 = i__; i__3 = i__; d__[i__2].r = dl[i__3].r, d__[i__2].i = dl[i__3].i; i__2 = i__; dl[i__2].r = fact.r, dl[i__2].i = fact.i; i__2 = i__; temp.r = du[i__2].r, temp.i = du[i__2].i; i__2 = i__; i__3 = i__ + 1; du[i__2].r = d__[i__3].r, du[i__2].i = d__[i__3].i; i__2 = i__ + 1; i__3 = i__ + 1; q__2.r = fact.r * d__[i__3].r - fact.i * d__[i__3].i, q__2.i = fact.r * d__[i__3].i + fact.i * d__[i__3].r; q__1.r = temp.r - q__2.r, q__1.i = temp.i - q__2.i; d__[i__2].r = q__1.r, d__[i__2].i = q__1.i; i__2 = i__; i__3 = i__ + 1; du2[i__2].r = du[i__3].r, du2[i__2].i = du[i__3].i; i__2 = i__ + 1; q__2.r = -fact.r, q__2.i = -fact.i; i__3 = i__ + 1; q__1.r = q__2.r * du[i__3].r - q__2.i * du[i__3].i, q__1.i = q__2.r * du[i__3].i + q__2.i * du[i__3].r; du[i__2].r = q__1.r, du[i__2].i = q__1.i; ipiv[i__] = i__ + 1; } /* L30: */ } if (*n > 1) { i__ = *n - 1; i__1 = i__; i__2 = i__; if ((r__1 = d__[i__1].r, dabs(r__1)) + (r__2 = r_imag(&d__[i__]), dabs(r__2)) >= (r__3 = dl[i__2].r, dabs(r__3)) + (r__4 = r_imag(&dl[i__]), dabs(r__4))) { i__1 = i__; if ((r__1 = d__[i__1].r, dabs(r__1)) + (r__2 = r_imag(&d__[i__]), dabs(r__2)) != 0.f) { c_div(&q__1, &dl[i__], &d__[i__]); fact.r = q__1.r, fact.i = q__1.i; i__1 = i__; dl[i__1].r = fact.r, dl[i__1].i = fact.i; i__1 = i__ + 1; i__2 = i__ + 1; i__3 = i__; q__2.r = fact.r * du[i__3].r - fact.i * du[i__3].i, q__2.i = fact.r * du[i__3].i + fact.i * du[i__3].r; q__1.r = d__[i__2].r - q__2.r, q__1.i = d__[i__2].i - q__2.i; d__[i__1].r = q__1.r, d__[i__1].i = q__1.i; } } else { c_div(&q__1, &d__[i__], &dl[i__]); fact.r = q__1.r, fact.i = q__1.i; i__1 = i__; i__2 = i__; d__[i__1].r = dl[i__2].r, d__[i__1].i = dl[i__2].i; i__1 = i__; dl[i__1].r = fact.r, dl[i__1].i = fact.i; i__1 = i__; temp.r = du[i__1].r, temp.i = du[i__1].i; i__1 = i__; i__2 = i__ + 1; du[i__1].r = d__[i__2].r, du[i__1].i = d__[i__2].i; i__1 = i__ + 1; i__2 = i__ + 1; q__2.r = fact.r * d__[i__2].r - fact.i * d__[i__2].i, q__2.i = fact.r * d__[i__2].i + fact.i * d__[i__2].r; q__1.r = temp.r - q__2.r, q__1.i = temp.i - q__2.i; d__[i__1].r = q__1.r, d__[i__1].i = q__1.i; ipiv[i__] = i__ + 1; } } /* Check for a zero on the diagonal of U. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; if ((r__1 = d__[i__2].r, dabs(r__1)) + (r__2 = r_imag(&d__[i__]), dabs(r__2)) == 0.f) { *info = i__; goto L50; } /* L40: */ } L50: return 0; /* End of CGTTRF */ } /* cgttrf_ */