/* cgbcon.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cgbcon_(char *norm, integer *n, integer *kl, integer *ku, complex *ab, integer *ldab, integer *ipiv, real *anorm, real *rcond, complex *work, real *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3; real r__1, r__2; complex q__1, q__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer j; complex t; integer kd, lm, jp, ix, kase, kase1; real scale; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); logical lnoti; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *); extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clatbs_(char *, char *, char *, char *, integer *, integer *, complex *, integer *, complex *, real *, real *, integer *), xerbla_(char * , integer *); real ainvnm; extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer *); logical onenrm; char normin[1]; real smlnum; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGBCON estimates the reciprocal of the condition number of a complex */ /* general band matrix A, in either the 1-norm or the infinity-norm, */ /* using the LU factorization computed by CGBTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* AB (input) COMPLEX array, dimension (LDAB,N) */ /* Details of the LU factorization of the band matrix A, as */ /* computed by CGBTRF. U is stored as an upper triangular band */ /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */ /* the multipliers used during the factorization are stored in */ /* rows KL+KU+2 to 2*KL+KU+1. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= N, row i of the matrix was */ /* interchanged with row IPIV(i). */ /* ANORM (input) REAL */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --ipiv; --work; --rwork; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0) { *info = -3; } else if (*ku < 0) { *info = -4; } else if (*ldab < (*kl << 1) + *ku + 1) { *info = -6; } else if (*anorm < 0.f) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("CGBCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm == 0.f) { return 0; } smlnum = slamch_("Safe minimum"); /* Estimate the norm of inv(A). */ ainvnm = 0.f; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kd = *kl + *ku + 1; lnoti = *kl > 0; kase = 0; L10: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(L). */ if (lnoti) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = *kl, i__3 = *n - j; lm = min(i__2,i__3); jp = ipiv[j]; i__2 = jp; t.r = work[i__2].r, t.i = work[i__2].i; if (jp != j) { i__2 = jp; i__3 = j; work[i__2].r = work[i__3].r, work[i__2].i = work[i__3] .i; i__2 = j; work[i__2].r = t.r, work[i__2].i = t.i; } q__1.r = -t.r, q__1.i = -t.i; caxpy_(&lm, &q__1, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); /* L20: */ } } /* Multiply by inv(U). */ i__1 = *kl + *ku; clatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, & ab[ab_offset], ldab, &work[1], &scale, &rwork[1], info); } else { /* Multiply by inv(U'). */ i__1 = *kl + *ku; clatbs_("Upper", "Conjugate transpose", "Non-unit", normin, n, & i__1, &ab[ab_offset], ldab, &work[1], &scale, &rwork[1], info); /* Multiply by inv(L'). */ if (lnoti) { for (j = *n - 1; j >= 1; --j) { /* Computing MIN */ i__1 = *kl, i__2 = *n - j; lm = min(i__1,i__2); i__1 = j; i__2 = j; cdotc_(&q__2, &lm, &ab[kd + 1 + j * ab_dim1], &c__1, & work[j + 1], &c__1); q__1.r = work[i__2].r - q__2.r, q__1.i = work[i__2].i - q__2.i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; jp = ipiv[j]; if (jp != j) { i__1 = jp; t.r = work[i__1].r, t.i = work[i__1].i; i__1 = jp; i__2 = j; work[i__1].r = work[i__2].r, work[i__1].i = work[i__2] .i; i__1 = j; work[i__1].r = t.r, work[i__1].i = t.i; } /* L30: */ } } } /* Divide X by 1/SCALE if doing so will not cause overflow. */ *(unsigned char *)normin = 'Y'; if (scale != 1.f) { ix = icamax_(n, &work[1], &c__1); i__1 = ix; if (scale < ((r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(& work[ix]), dabs(r__2))) * smlnum || scale == 0.f) { goto L40; } csrscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } L40: return 0; /* End of CGBCON */ } /* cgbcon_ */