/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int chemm_(char *side, char *uplo, integer *m, integer *n, complex *alpha, complex *a, integer *lda, complex *b, integer *ldb, complex *beta, complex *c, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; complex q__1, q__2, q__3, q__4, q__5; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ static integer info; static complex temp1, temp2; static integer i, j, k; extern logical lsame_(char *, char *); static integer nrowa; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= CHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C, or C := alpha*B*A + beta*C, where alpha and beta are scalars, A is an hermitian matrix and B and C are m by n matrices. Parameters ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether the hermitian matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the hermitian matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the hermitian matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the hermitian matrix is to be referenced. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. B - COMPLEX array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - COMPLEX array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Set NROWA as the number of rows of A. Parameter adjustments Function Body */ #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] #define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] #define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)] if (lsame_(side, "L")) { nrowa = *m; } else { nrowa = *n; } upper = lsame_(uplo, "U"); /* Test the input parameters. */ info = 0; if (! lsame_(side, "L") && ! lsame_(side, "R")) { info = 1; } else if (! upper && ! lsame_(uplo, "L")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,*m)) { info = 9; } else if (*ldc < max(1,*m)) { info = 12; } if (info != 0) { xerbla_("CHEMM ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f)) { return 0; } /* And when alpha.eq.zero. */ if (alpha->r == 0.f && alpha->i == 0.f) { if (beta->r == 0.f && beta->i == 0.f) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; C(i,j).r = 0.f, C(i,j).i = 0.f; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; i__4 = i + j * c_dim1; q__1.r = beta->r * C(i,j).r - beta->i * C(i,j).i, q__1.i = beta->r * C(i,j).i + beta->i * C(i,j) .r; C(i,j).r = q__1.r, C(i,j).i = q__1.i; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (lsame_(side, "L")) { /* Form C := alpha*A*B + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * b_dim1; q__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j).i, q__1.i = alpha->r * B(i,j).i + alpha->i * B(i,j) .r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; i__3 = i - 1; for (k = 1; k <= i-1; ++k) { i__4 = k + j * c_dim1; i__5 = k + j * c_dim1; i__6 = k + i * a_dim1; q__2.r = temp1.r * A(k,i).r - temp1.i * A(k,i).i, q__2.i = temp1.r * A(k,i).i + temp1.i * A(k,i).r; q__1.r = C(k,j).r + q__2.r, q__1.i = C(k,j).i + q__2.i; C(k,j).r = q__1.r, C(k,j).i = q__1.i; i__4 = k + j * b_dim1; r_cnjg(&q__3, &A(k,i)); q__2.r = B(k,j).r * q__3.r - B(k,j).i * q__3.i, q__2.i = B(k,j).r * q__3.i + B(k,j).i * q__3.r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; /* L50: */ } if (beta->r == 0.f && beta->i == 0.f) { i__3 = i + j * c_dim1; i__4 = i + i * a_dim1; d__1 = A(i,i).r; q__2.r = d__1 * temp1.r, q__2.i = d__1 * temp1.i; q__3.r = alpha->r * temp2.r - alpha->i * temp2.i, q__3.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; } else { i__3 = i + j * c_dim1; i__4 = i + j * c_dim1; q__3.r = beta->r * C(i,j).r - beta->i * C(i,j).i, q__3.i = beta->r * C(i,j).i + beta->i * C(i,j).r; i__5 = i + i * a_dim1; d__1 = A(i,i).r; q__4.r = d__1 * temp1.r, q__4.i = d__1 * temp1.i; q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i; q__5.r = alpha->r * temp2.r - alpha->i * temp2.i, q__5.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; } /* L60: */ } /* L70: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { for (i = *m; i >= 1; --i) { i__2 = i + j * b_dim1; q__1.r = alpha->r * B(i,j).r - alpha->i * B(i,j).i, q__1.i = alpha->r * B(i,j).i + alpha->i * B(i,j) .r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; i__2 = *m; for (k = i + 1; k <= *m; ++k) { i__3 = k + j * c_dim1; i__4 = k + j * c_dim1; i__5 = k + i * a_dim1; q__2.r = temp1.r * A(k,i).r - temp1.i * A(k,i).i, q__2.i = temp1.r * A(k,i).i + temp1.i * A(k,i).r; q__1.r = C(k,j).r + q__2.r, q__1.i = C(k,j).i + q__2.i; C(k,j).r = q__1.r, C(k,j).i = q__1.i; i__3 = k + j * b_dim1; r_cnjg(&q__3, &A(k,i)); q__2.r = B(k,j).r * q__3.r - B(k,j).i * q__3.i, q__2.i = B(k,j).r * q__3.i + B(k,j).i * q__3.r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; /* L80: */ } if (beta->r == 0.f && beta->i == 0.f) { i__2 = i + j * c_dim1; i__3 = i + i * a_dim1; d__1 = A(i,i).r; q__2.r = d__1 * temp1.r, q__2.i = d__1 * temp1.i; q__3.r = alpha->r * temp2.r - alpha->i * temp2.i, q__3.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; } else { i__2 = i + j * c_dim1; i__3 = i + j * c_dim1; q__3.r = beta->r * C(i,j).r - beta->i * C(i,j).i, q__3.i = beta->r * C(i,j).i + beta->i * C(i,j).r; i__4 = i + i * a_dim1; d__1 = A(i,i).r; q__4.r = d__1 * temp1.r, q__4.i = d__1 * temp1.i; q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i; q__5.r = alpha->r * temp2.r - alpha->i * temp2.i, q__5.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; } /* L90: */ } /* L100: */ } } } else { /* Form C := alpha*B*A + beta*C. */ i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = j + j * a_dim1; d__1 = A(j,j).r; q__1.r = d__1 * alpha->r, q__1.i = d__1 * alpha->i; temp1.r = q__1.r, temp1.i = q__1.i; if (beta->r == 0.f && beta->i == 0.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; i__4 = i + j * b_dim1; q__1.r = temp1.r * B(i,j).r - temp1.i * B(i,j).i, q__1.i = temp1.r * B(i,j).i + temp1.i * B(i,j) .r; C(i,j).r = q__1.r, C(i,j).i = q__1.i; /* L110: */ } } else { i__2 = *m; for (i = 1; i <= *m; ++i) { i__3 = i + j * c_dim1; i__4 = i + j * c_dim1; q__2.r = beta->r * C(i,j).r - beta->i * C(i,j).i, q__2.i = beta->r * C(i,j).i + beta->i * C(i,j) .r; i__5 = i + j * b_dim1; q__3.r = temp1.r * B(i,j).r - temp1.i * B(i,j).i, q__3.i = temp1.r * B(i,j).i + temp1.i * B(i,j) .r; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; /* L120: */ } } i__2 = j - 1; for (k = 1; k <= j-1; ++k) { if (upper) { i__3 = k + j * a_dim1; q__1.r = alpha->r * A(k,j).r - alpha->i * A(k,j).i, q__1.i = alpha->r * A(k,j).i + alpha->i * A(k,j) .r; temp1.r = q__1.r, temp1.i = q__1.i; } else { r_cnjg(&q__2, &A(j,k)); q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = alpha->r * q__2.i + alpha->i * q__2.r; temp1.r = q__1.r, temp1.i = q__1.i; } i__3 = *m; for (i = 1; i <= *m; ++i) { i__4 = i + j * c_dim1; i__5 = i + j * c_dim1; i__6 = i + k * b_dim1; q__2.r = temp1.r * B(i,k).r - temp1.i * B(i,k).i, q__2.i = temp1.r * B(i,k).i + temp1.i * B(i,k) .r; q__1.r = C(i,j).r + q__2.r, q__1.i = C(i,j).i + q__2.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; /* L130: */ } /* L140: */ } i__2 = *n; for (k = j + 1; k <= *n; ++k) { if (upper) { r_cnjg(&q__2, &A(j,k)); q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i = alpha->r * q__2.i + alpha->i * q__2.r; temp1.r = q__1.r, temp1.i = q__1.i; } else { i__3 = k + j * a_dim1; q__1.r = alpha->r * A(k,j).r - alpha->i * A(k,j).i, q__1.i = alpha->r * A(k,j).i + alpha->i * A(k,j) .r; temp1.r = q__1.r, temp1.i = q__1.i; } i__3 = *m; for (i = 1; i <= *m; ++i) { i__4 = i + j * c_dim1; i__5 = i + j * c_dim1; i__6 = i + k * b_dim1; q__2.r = temp1.r * B(i,k).r - temp1.i * B(i,k).i, q__2.i = temp1.r * B(i,k).i + temp1.i * B(i,k) .r; q__1.r = C(i,j).r + q__2.r, q__1.i = C(i,j).i + q__2.i; C(i,j).r = q__1.r, C(i,j).i = q__1.i; /* L150: */ } /* L160: */ } /* L170: */ } } return 0; /* End of CHEMM . */ } /* chemm_ */