#include "blaswrap.h" /* ztpt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublecomplex c_b12 = {-1.,0.}; /* Subroutine */ int ztpt02_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, doublecomplex *ap, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublecomplex *work, doublereal * rwork, doublereal *resid ) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; static doublereal eps; extern logical lsame_(char *, char *); static doublereal anorm, bnorm, xnorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), ztpmv_( char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), dzasum_(integer *, doublecomplex *, integer *), zlantp_(char *, char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZTPT02 computes the residual for the computed solution to a triangular system of linear equations A*x = b, A**T *x = b, or A**H *x = b, when the triangular matrix A is stored in packed format. Here A**T denotes the transpose of A, A**H denotes the conjugate transpose of A, and x and b are N by NRHS matrices. The test ratio is the maximum over the number of right hand sides of the maximum over the number of right hand sides of norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': A *x = b (No transpose) = 'T': A**T *x = b (Transpose) = 'C': A**H *x = b (Conjugate transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. NRHS >= 0. AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. X (input) COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input) COMPLEX*16 array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK (workspace) COMPLEX*16 array, dimension (N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ --ap; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Compute the 1-norm of A or A**H. */ if (lsame_(trans, "N")) { anorm = zlantp_("1", uplo, diag, n, &ap[1], &rwork[1]); } else { anorm = zlantp_("I", uplo, diag, n, &ap[1], &rwork[1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute the maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); ztpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1); zaxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); bnorm = dzasum_(n, &work[1], &c__1); xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of ZTPT02 */ } /* ztpt02_ */