#include "blaswrap.h" /* zpbt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zpbt02_(char *uplo, integer *n, integer *kd, integer * nrhs, doublecomplex *a, integer *lda, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; doublecomplex z__1; /* Local variables */ static integer j; static doublereal eps, anorm, bnorm; extern /* Subroutine */ int zhbmv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); static doublereal xnorm; extern doublereal dlamch_(char *), zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), dzasum_(integer *, doublecomplex *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZPBT02 computes the residual for a solution of a Hermitian banded system of equations A*x = b: RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS) where EPS is the machine precision. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. KD (input) INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The original Hermitian band matrix A. If UPLO = 'U', the upper triangular part of A is stored as a band matrix; if UPLO = 'L', the lower triangular part of A is stored. The columns of the appropriate triangle are stored in the columns of A and the diagonals of the triangle are stored in the rows of A. See ZPBTRF for further details. LDA (input) INTEGER. The leading dimension of the array A. LDA >= max(1,KD+1). X (input) COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlanhb_("1", uplo, n, kd, &a[a_offset], lda, &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { z__1.r = -1., z__1.i = -0.; zhbmv_(uplo, n, kd, &z__1, &a[a_offset], lda, &x[j * x_dim1 + 1], & c__1, &c_b1, &b[j * b_dim1 + 1], &c__1); /* L10: */ } /* Compute the maximum over the number of right hand sides of norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dzasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L20: */ } return 0; /* End of ZPBT02 */ } /* zpbt02_ */