#include "blaswrap.h" /* sqlt03.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b4 = -1e10f; static integer c__2 = 2; static real c_b22 = -1.f; static real c_b23 = 1.f; /* Subroutine */ int sqlt03_(integer *m, integer *n, integer *k, real *af, real *c__, real *cc, real *q, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* Initialized data */ static integer iseed[4] = { 1988,1989,1990,1991 }; /* System generated locals */ integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer j, mc, nc; static real eps; static char side[1]; static integer info, iside; extern logical lsame_(char *, char *); static real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer minmn; static real cnorm; static char trans[1]; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static integer itrans; extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real *), sorgql_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sormql_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SQLT03 tests SORMQL, which computes Q*C, Q'*C, C*Q or C*Q'. SQLT03 compares the results of a call to SORMQL with the results of forming Q explicitly by a call to SORGQL and then performing matrix multiplication by a call to SGEMM. Arguments ========= M (input) INTEGER The order of the orthogonal matrix Q. M >= 0. N (input) INTEGER The number of rows or columns of the matrix C; C is m-by-n if Q is applied from the left, or n-by-m if Q is applied from the right. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the orthogonal matrix Q. M >= K >= 0. AF (input) REAL array, dimension (LDA,N) Details of the QL factorization of an m-by-n matrix, as returned by SGEQLF. See SGEQLF for further details. C (workspace) REAL array, dimension (LDA,N) CC (workspace) REAL array, dimension (LDA,N) Q (workspace) REAL array, dimension (LDA,M) LDA (input) INTEGER The leading dimension of the arrays AF, C, CC, and Q. TAU (input) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors corresponding to the QL factorization in AF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of WORK. LWORK must be at least M, and should be M*NB, where NB is the blocksize for this environment. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (4) The test ratios compare two techniques for multiplying a random matrix C by an m-by-m orthogonal matrix Q. RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) ===================================================================== Parameter adjustments */ q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; cc_dim1 = *lda; cc_offset = 1 + cc_dim1; cc -= cc_offset; c_dim1 = *lda; c_offset = 1 + c_dim1; c__ -= c_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = slamch_("Epsilon"); minmn = min(*m,*n); /* Quick return if possible */ if (minmn == 0) { result[1] = 0.f; result[2] = 0.f; result[3] = 0.f; result[4] = 0.f; return 0; } /* Copy the last k columns of the factorization to the array Q */ slaset_("Full", m, m, &c_b4, &c_b4, &q[q_offset], lda); if (*k > 0 && *m > *k) { i__1 = *m - *k; slacpy_("Full", &i__1, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &q[(* m - *k + 1) * q_dim1 + 1], lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; slacpy_("Upper", &i__1, &i__2, &af[*m - *k + 1 + (*n - *k + 2) * af_dim1], lda, &q[*m - *k + 1 + (*m - *k + 2) * q_dim1], lda); } /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "SORGQL", (ftnlen)6, (ftnlen)6); sorgql_(m, m, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork, &info); for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)side = 'L'; mc = *m; nc = *n; } else { *(unsigned char *)side = 'R'; mc = *n; nc = *m; } /* Generate MC by NC matrix C */ i__1 = nc; for (j = 1; j <= i__1; ++j) { slarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]); /* L10: */ } cnorm = slange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]); if (cnorm == 0.f) { cnorm = 1.f; } for (itrans = 1; itrans <= 2; ++itrans) { if (itrans == 1) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } /* Copy C */ slacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], lda); /* Apply Q or Q' to C */ s_copy(srnamc_1.srnamt, "SORMQL", (ftnlen)6, (ftnlen)6); if (*k > 0) { sormql_(side, trans, &mc, &nc, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[1], lwork, &info); } /* Form explicit product and subtract */ if (lsame_(side, "L")) { sgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b22, &q[ q_offset], lda, &c__[c_offset], lda, &c_b23, &cc[ cc_offset], lda); } else { sgemm_("No transpose", trans, &mc, &nc, &nc, &c_b22, &c__[ c_offset], lda, &q[q_offset], lda, &c_b23, &cc[ cc_offset], lda); } /* Compute error in the difference */ resid = slange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]); result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*m) * cnorm * eps); /* L20: */ } /* L30: */ } return 0; /* End of SQLT03 */ } /* sqlt03_ */