#include "blaswrap.h" /* dpot02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b5 = -1.; static doublereal c_b6 = 1.; static integer c__1 = 1; /* Subroutine */ int dpot02_(char *uplo, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *x, integer *ldx, doublereal * b, integer *ldb, doublereal *rwork, doublereal *resid ) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; static doublereal eps; extern doublereal dasum_(integer *, doublereal *, integer *); static doublereal anorm, bnorm; extern /* Subroutine */ int dsymm_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static doublereal xnorm; extern doublereal dlamch_(char *), dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DPOT02 computes the residual for the solution of a symmetric system of linear equations A*x = b: RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), where EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The original symmetric matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N) X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X */ dsymm_("Left", uplo, n, nrhs, &c_b5, &a[a_offset], lda, &x[x_offset], ldx, &c_b6, &b[b_offset], ldb); /* Compute the maximum over the number of right hand sides of norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of DPOT02 */ } /* dpot02_ */