#include "blaswrap.h" /* dlaptm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Subroutine */ int dlaptm_(integer *n, integer *nrhs, doublereal *alpha, doublereal *d__, doublereal *e, doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer *ldb) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ static integer i__, j; /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DLAPTM multiplies an N by NRHS matrix X by a symmetric tridiagonal matrix A and stores the result in a matrix B. The operation has the form B := alpha * A * X + beta * B where alpha may be either 1. or -1. and beta may be 0., 1., or -1. Arguments ========= N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. ALPHA (input) DOUBLE PRECISION The scalar alpha. ALPHA must be 1. or -1.; otherwise, it is assumed to be 0. D (input) DOUBLE PRECISION array, dimension (N) The n diagonal elements of the tridiagonal matrix A. E (input) DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal or superdiagonal elements of A. X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) The N by NRHS matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(N,1). BETA (input) DOUBLE PRECISION The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is assumed to be 1. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(N,1). ===================================================================== Parameter adjustments */ --d__; --e; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ if (*n == 0) { return 0; } /* Multiply B by BETA if BETA.NE.1. */ if (*beta == 0.) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = 0.; /* L10: */ } /* L20: */ } } else if (*beta == -1.) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = -b[i__ + j * b_dim1]; /* L30: */ } /* L40: */ } } if (*alpha == 1.) { /* Compute B := B + A*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * x_dim1 + 1] + e[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] + e[*n - 1] * x[*n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + e[i__ - 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[i__ + j * x_dim1] + e[i__] * x[i__ + 1 + j * x_dim1]; /* L50: */ } } /* L60: */ } } else if (*alpha == -1.) { /* Compute B := B - A*X */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (*n == 1) { b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1]; } else { b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * x_dim1 + 1] - e[1] * x[j * x_dim1 + 2]; b[*n + j * b_dim1] = b[*n + j * b_dim1] - e[*n - 1] * x[*n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]; i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - e[i__ - 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[i__ + j * x_dim1] - e[i__] * x[i__ + 1 + j * x_dim1]; /* L70: */ } } /* L80: */ } } return 0; /* End of DLAPTM */ } /* dlaptm_ */