#include "blaswrap.h"
/* cppt02.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"

/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* Subroutine */ int cppt02_(char *uplo, integer *n, integer *nrhs, complex *
	a, complex *x, integer *ldx, complex *b, integer *ldb, real *rwork, 
	real *resid)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    static integer j;
    static real eps, anorm, bnorm;
    extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex *
, complex *, integer *, complex *, complex *, integer *);
    static real xnorm;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *), scasum_(integer *, 
	    complex *, integer *);


/*  -- LAPACK test routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    CPPT02 computes the residual in the solution of a Hermitian system   
    of linear equations  A*x = b  when packed storage is used for the   
    coefficient matrix.  The ratio computed is   

       RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS),   

    where EPS is the machine precision.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            Hermitian matrix A is stored:   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The number of rows and columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of columns of B, the matrix of right hand sides.   
            NRHS >= 0.   

    A       (input) COMPLEX array, dimension (N*(N+1)/2)   
            The original Hermitian matrix A, stored as a packed   
            triangular matrix.   

    X       (input) COMPLEX array, dimension (LDX,NRHS)   
            The computed solution vectors for the system of linear   
            equations.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.   LDX >= max(1,N).   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the right hand side vectors for the system of   
            linear equations.   
            On exit, B is overwritten with the difference B - A*X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    RWORK   (workspace) REAL array, dimension (N)   

    RESID   (output) REAL   
            The maximum over the number of right hand sides of   
            norm(B - A*X) / ( norm(A) * norm(X) * EPS ).   

    =====================================================================   


       Quick exit if N = 0 or NRHS = 0.   

       Parameter adjustments */
    --a;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = clanhp_("1", uplo, n, &a[1], &rwork[1]);
    if (anorm <= 0.f) {
	*resid = 1.f / eps;
	return 0;
    }

/*     Compute  B - A*X  for the matrix of right hand sides B. */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	q__1.r = -1.f, q__1.i = -0.f;
	chpmv_(uplo, n, &q__1, &a[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &b[j *
		 b_dim1 + 1], &c__1);
/* L10: */
    }

/*     Compute the maximum over the number of right hand sides of   
          norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = scasum_(n, &b[j * b_dim1 + 1], &c__1);
	xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1);
	if (xnorm <= 0.f) {
	    *resid = 1.f / eps;
	} else {
/* Computing MAX */
	    r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
	    *resid = dmax(r__1,r__2);
	}
/* L20: */
    }

    return 0;

/*     End of CPPT02 */

} /* cppt02_ */