#include "blaswrap.h" /* cpbt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b17 = 1.f; /* Subroutine */ int cpbt01_(char *uplo, integer *n, integer *kd, complex *a, integer *lda, complex *afac, integer *ldafac, real *rwork, real * resid) { /* System generated locals */ integer a_dim1, a_offset, afac_dim1, afac_offset, i__1, i__2, i__3, i__4, i__5; complex q__1; /* Builtin functions */ double r_imag(complex *); /* Local variables */ static integer i__, j, k, kc, ml, mu; static real akk, eps; extern /* Subroutine */ int cher_(char *, integer *, real *, complex *, integer *, complex *, integer *); static integer klen; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); static real anorm; extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *); extern doublereal clanhb_(char *, char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CPBT01 reconstructs a Hermitian positive definite band matrix A from its L*L' or U'*U factorization and computes the residual norm( L*L' - A ) / ( N * norm(A) * EPS ) or norm( U'*U - A ) / ( N * norm(A) * EPS ), where EPS is the machine epsilon, L' is the conjugate transpose of L, and U' is the conjugate transpose of U. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. KD (input) INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0. A (input) COMPLEX array, dimension (LDA,N) The original Hermitian band matrix A. If UPLO = 'U', the upper triangular part of A is stored as a band matrix; if UPLO = 'L', the lower triangular part of A is stored. The columns of the appropriate triangle are stored in the columns of A and the diagonals of the triangle are stored in the rows of A. See CPBTRF for further details. LDA (input) INTEGER. The leading dimension of the array A. LDA >= max(1,KD+1). AFAC (input) COMPLEX array, dimension (LDAFAC,N) The factored form of the matrix A. AFAC contains the factor L or U from the L*L' or U'*U factorization in band storage format, as computed by CPBTRF. LDAFAC (input) INTEGER The leading dimension of the array AFAC. LDAFAC >= max(1,KD+1). RWORK (workspace) REAL array, dimension (N) RESID (output) REAL If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) ===================================================================== Quick exit if N = 0. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; afac_dim1 = *ldafac; afac_offset = 1 + afac_dim1; afac -= afac_offset; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = clanhb_("1", uplo, n, kd, &a[a_offset], lda, &rwork[1]); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Check the imaginary parts of the diagonal elements and return with an error code if any are nonzero. */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (r_imag(&afac[*kd + 1 + j * afac_dim1]) != 0.f) { *resid = 1.f / eps; return 0; } /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (r_imag(&afac[j * afac_dim1 + 1]) != 0.f) { *resid = 1.f / eps; return 0; } /* L20: */ } } /* Compute the product U'*U, overwriting U. */ if (lsame_(uplo, "U")) { for (k = *n; k >= 1; --k) { /* Computing MAX */ i__1 = 1, i__2 = *kd + 2 - k; kc = max(i__1,i__2); klen = *kd + 1 - kc; /* Compute the (K,K) element of the result. */ i__1 = klen + 1; cdotc_(&q__1, &i__1, &afac[kc + k * afac_dim1], &c__1, &afac[kc + k * afac_dim1], &c__1); akk = q__1.r; i__1 = *kd + 1 + k * afac_dim1; afac[i__1].r = akk, afac[i__1].i = 0.f; /* Compute the rest of column K. */ if (klen > 0) { i__1 = *ldafac - 1; ctrmv_("Upper", "Conjugate", "Non-unit", &klen, &afac[*kd + 1 + (k - klen) * afac_dim1], &i__1, &afac[kc + k * afac_dim1], &c__1); } /* L30: */ } /* UPLO = 'L': Compute the product L*L', overwriting L. */ } else { for (k = *n; k >= 1; --k) { /* Computing MIN */ i__1 = *kd, i__2 = *n - k; klen = min(i__1,i__2); /* Add a multiple of column K of the factor L to each of columns K+1 through N. */ if (klen > 0) { i__1 = *ldafac - 1; cher_("Lower", &klen, &c_b17, &afac[k * afac_dim1 + 2], &c__1, &afac[(k + 1) * afac_dim1 + 1], &i__1); } /* Scale column K by the diagonal element. */ i__1 = k * afac_dim1 + 1; akk = afac[i__1].r; i__1 = klen + 1; csscal_(&i__1, &akk, &afac[k * afac_dim1 + 1], &c__1); /* L40: */ } } /* Compute the difference L*L' - A or U'*U - A. */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = 1, i__3 = *kd + 2 - j; mu = max(i__2,i__3); i__2 = *kd + 1; for (i__ = mu; i__ <= i__2; ++i__) { i__3 = i__ + j * afac_dim1; i__4 = i__ + j * afac_dim1; i__5 = i__ + j * a_dim1; q__1.r = afac[i__4].r - a[i__5].r, q__1.i = afac[i__4].i - a[ i__5].i; afac[i__3].r = q__1.r, afac[i__3].i = q__1.i; /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = *kd + 1, i__3 = *n - j + 1; ml = min(i__2,i__3); i__2 = ml; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * afac_dim1; i__4 = i__ + j * afac_dim1; i__5 = i__ + j * a_dim1; q__1.r = afac[i__4].r - a[i__5].r, q__1.i = afac[i__4].i - a[ i__5].i; afac[i__3].r = q__1.r, afac[i__3].i = q__1.i; /* L70: */ } /* L80: */ } } /* Compute norm( L*L' - A ) / ( N * norm(A) * EPS ) */ *resid = clanhb_("1", uplo, n, kd, &afac[afac_offset], ldafac, &rwork[1]); *resid = *resid / (real) (*n) / anorm / eps; return 0; /* End of CPBT01 */ } /* cpbt01_ */