#include "blaswrap.h" /* clqt03.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b1 = {-1e10f,-1e10f}; static integer c__2 = 2; static complex c_b20 = {-1.f,0.f}; static complex c_b21 = {1.f,0.f}; /* Subroutine */ int clqt03_(integer *m, integer *n, integer *k, complex *af, complex *c__, complex *cc, complex *q, integer *lda, complex *tau, complex *work, integer *lwork, real *rwork, real *result) { /* Initialized data */ static integer iseed[4] = { 1988,1989,1990,1991 }; /* System generated locals */ integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, q_offset, i__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer j, mc, nc; static real eps; static char side[1]; static integer info; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static integer iside; extern logical lsame_(char *, char *); static real resid, cnorm; static char trans[1]; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), clarnv_(integer *, integer *, integer *, complex *), cunglq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer itrans; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLQT03 tests CUNMLQ, which computes Q*C, Q'*C, C*Q or C*Q'. CLQT03 compares the results of a call to CUNMLQ with the results of forming Q explicitly by a call to CUNGLQ and then performing matrix multiplication by a call to CGEMM. Arguments ========= M (input) INTEGER The number of rows or columns of the matrix C; C is n-by-m if Q is applied from the left, or m-by-n if Q is applied from the right. M >= 0. N (input) INTEGER The order of the orthogonal matrix Q. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the orthogonal matrix Q. N >= K >= 0. AF (input) COMPLEX array, dimension (LDA,N) Details of the LQ factorization of an m-by-n matrix, as returned by CGELQF. See CGELQF for further details. C (workspace) COMPLEX array, dimension (LDA,N) CC (workspace) COMPLEX array, dimension (LDA,N) Q (workspace) COMPLEX array, dimension (LDA,N) LDA (input) INTEGER The leading dimension of the arrays AF, C, CC, and Q. TAU (input) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors corresponding to the LQ factorization in AF. WORK (workspace) COMPLEX array, dimension (LWORK) LWORK (input) INTEGER The length of WORK. LWORK must be at least M, and should be M*NB, where NB is the blocksize for this environment. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (4) The test ratios compare two techniques for multiplying a random matrix C by an n-by-n orthogonal matrix Q. RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS ) RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS ) RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) ===================================================================== Parameter adjustments */ q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; cc_dim1 = *lda; cc_offset = 1 + cc_dim1; cc -= cc_offset; c_dim1 = *lda; c_offset = 1 + c_dim1; c__ -= c_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = slamch_("Epsilon"); /* Copy the first k rows of the factorization to the array Q */ claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda); i__1 = *n - 1; clacpy_("Upper", k, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) + 1], lda); /* Generate the n-by-n matrix Q */ s_copy(srnamc_1.srnamt, "CUNGLQ", (ftnlen)6, (ftnlen)6); cunglq_(n, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)side = 'L'; mc = *n; nc = *m; } else { *(unsigned char *)side = 'R'; mc = *m; nc = *n; } /* Generate MC by NC matrix C */ i__1 = nc; for (j = 1; j <= i__1; ++j) { clarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]); /* L10: */ } cnorm = clange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]); if (cnorm == 0.f) { cnorm = 1.f; } for (itrans = 1; itrans <= 2; ++itrans) { if (itrans == 1) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'C'; } /* Copy C */ clacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], lda); /* Apply Q or Q' to C */ s_copy(srnamc_1.srnamt, "CUNMLQ", (ftnlen)6, (ftnlen)6); cunmlq_(side, trans, &mc, &nc, k, &af[af_offset], lda, &tau[1], & cc[cc_offset], lda, &work[1], lwork, &info); /* Form explicit product and subtract */ if (lsame_(side, "L")) { cgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b20, &q[ q_offset], lda, &c__[c_offset], lda, &c_b21, &cc[ cc_offset], lda); } else { cgemm_("No transpose", trans, &mc, &nc, &nc, &c_b20, &c__[ c_offset], lda, &q[q_offset], lda, &c_b21, &cc[ cc_offset], lda); } /* Compute error in the difference */ resid = clange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]); result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * cnorm * eps); /* L20: */ } /* L30: */ } return 0; /* End of CLQT03 */ } /* clqt03_ */