#include "blaswrap.h" /* clqt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b1 = {-1e10f,-1e10f}; static complex c_b10 = {0.f,0.f}; static complex c_b15 = {-1.f,0.f}; static complex c_b16 = {1.f,0.f}; static real c_b24 = -1.f; static real c_b25 = 1.f; /* Subroutine */ int clqt01_(integer *m, integer *n, complex *a, complex *af, complex *q, complex *l, integer *lda, complex *tau, complex *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static real eps; static integer info; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); static real resid, anorm; static integer minmn; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cunglq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLQT01 tests CGELQF, which computes the LQ factorization of an m-by-n matrix A, and partially tests CUNGLQ which forms the n-by-n orthogonal matrix Q. CLQT01 compares L with A*Q', and checks that Q is orthogonal. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input) COMPLEX array, dimension (LDA,N) The m-by-n matrix A. AF (output) COMPLEX array, dimension (LDA,N) Details of the LQ factorization of A, as returned by CGELQF. See CGELQF for further details. Q (output) COMPLEX array, dimension (LDA,N) The n-by-n orthogonal matrix Q. L (workspace) COMPLEX array, dimension (LDA,max(M,N)) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= max(M,N). TAU (output) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by CGELQF. WORK (workspace) COMPLEX array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) REAL array, dimension (max(M,N)) RESULT (output) REAL array, dimension (2) The test ratios: RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) ===================================================================== Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ minmn = min(*m,*n); eps = slamch_("Epsilon"); /* Copy the matrix A to the array AF. */ clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); /* Factorize the matrix A in the array AF. */ s_copy(srnamc_1.srnamt, "CGELQF", (ftnlen)6, (ftnlen)6); cgelqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy details of Q */ claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda); if (*n > 1) { i__1 = *n - 1; clacpy_("Upper", m, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) + 1], lda); } /* Generate the n-by-n matrix Q */ s_copy(srnamc_1.srnamt, "CUNGLQ", (ftnlen)6, (ftnlen)6); cunglq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L */ claset_("Full", m, n, &c_b10, &c_b10, &l[l_offset], lda); clacpy_("Lower", m, n, &af[af_offset], lda, &l[l_offset], lda); /* Compute L - A*Q' */ cgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b15, &a[ a_offset], lda, &q[q_offset], lda, &c_b16, &l[l_offset], lda); /* Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . */ anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); resid = clange_("1", m, n, &l[l_offset], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*n) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q*Q' */ claset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda); cherk_("Upper", "No transpose", n, n, &c_b24, &q[q_offset], lda, &c_b25, & l[l_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = clansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*n) / eps; return 0; /* End of CLQT01 */ } /* clqt01_ */