#include "blaswrap.h" /* cdrvls.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static complex c_b2 = {0.f,0.f}; static integer c__9 = 9; static integer c__25 = 25; static integer c__1 = 1; static integer c__3 = 3; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static real c_b91 = -1.f; /* Subroutine */ int cdrvls_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nns, integer *nsval, integer * nnb, integer *nbval, integer *nxval, real *thresh, logical *tsterr, complex *a, complex *copya, complex *b, complex *copyb, complex *c__, real *s, real *copys, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 TRANS='\002,a1,\002', M=\002,i5,\002, N" "=\002,i5,\002, NRHS=\002,i4,\002, NB=\002,i4,\002, type\002,i2" ",\002, test(\002,i2,\002)=\002,g12.5)"; static char fmt_9998[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, NRHS=" "\002,i4,\002, NB=\002,i4,\002, type\002,i2,\002, test(\002,i2" ",\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6; real r__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, j, k, m, n, nb, im, in, lda, ldb, inb; static real eps; static integer ins, info; static char path[3]; static integer rank, nrhs, nrun; extern /* Subroutine */ int alahd_(integer *, char *), cgemm_( char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static integer nfail, iseed[4]; extern /* Subroutine */ int cgels_(char *, integer *, integer *, integer * , complex *, integer *, complex *, integer *, complex *, integer * , integer *); static integer crank, irank; static real rcond; static integer itran, mnmin, ncols; static real norma, normb; extern doublereal cqrt12_(integer *, integer *, complex *, integer *, real *, complex *, integer *, real *), cqrt14_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *), cqrt17_(char *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static char trans[1]; static integer nerrs, itype; extern doublereal sasum_(integer *, real *, integer *); static integer lwork; extern /* Subroutine */ int cqrt13_(integer *, integer *, integer *, complex *, integer *, real *, integer *), cqrt15_(integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, integer *, real *, real *, integer * , complex *, integer *), cqrt16_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *), saxpy_(integer *, real *, real *, integer *, real *, integer *); static integer nrows, lwlsy; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer iscale; extern /* Subroutine */ int cgelsd_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, integer *, complex *, integer *, real *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), cgelss_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, integer *, complex *, integer *, real *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *), cgelsx_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, real *, integer *, complex *, real *, integer *), cgelsy_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, real *, integer *, complex *, integer *, real *, integer *), clarnv_(integer *, integer *, integer *, complex *), cerrls_(char *, integer *), xlaenv_(integer *, integer *); static integer ldwork; static real result[18]; /* Fortran I/O blocks */ static cilist io___34 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. January 2007 Purpose ======= CDRVLS tests the least squares driver routines CGELS, CGELSX, CGELSS, CGELSY and CGELSD. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. The matrix of type j is generated as follows: j=1: A = U*D*V where U and V are random unitary matrices and D has random entries (> 0.1) taken from a uniform distribution (0,1). A is full rank. j=2: The same of 1, but A is scaled up. j=3: The same of 1, but A is scaled down. j=4: A = U*D*V where U and V are random unitary matrices and D has 3*min(M,N)/4 random entries (> 0.1) taken from a uniform distribution (0,1) and the remaining entries set to 0. A is rank-deficient. j=5: The same of 4, but A is scaled up. j=6: The same of 5, but A is scaled down. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) COMPLEX array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL. COPYA (workspace) COMPLEX array, dimension (MMAX*NMAX) B (workspace) COMPLEX array, dimension (MMAX*NSMAX) where MMAX is the maximum value of M in MVAL and NSMAX is the maximum value of NRHS in NSVAL. COPYB (workspace) COMPLEX array, dimension (MMAX*NSMAX) C (workspace) COMPLEX array, dimension (MMAX*NSMAX) S (workspace) REAL array, dimension (min(MMAX,NMAX)) COPYS (workspace) REAL array, dimension (min(MMAX,NMAX)) WORK (workspace) COMPLEX array, dimension (MMAX*NMAX + 4*NMAX + MMAX). RWORK (workspace) REAL array, dimension (5*NMAX-1) IWORK (workspace) INTEGER array, dimension (15*NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --copys; --s; --c__; --copyb; --b; --copya; --a; --nxval; --nbval; --nsval; --nval; --mval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "LS", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = slamch_("Epsilon"); /* Threshold for rank estimation */ rcond = sqrt(eps) - (sqrt(eps) - eps) / 2; /* Test the error exits */ xlaenv_(&c__9, &c__25); if (*tsterr) { cerrls_(path, nout); } /* Print the header if NM = 0 or NN = 0 and THRESH = 0. */ if ((*nm == 0 || *nn == 0) && *thresh == 0.f) { alahd_(nout, path); } infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = max(1,m); ldb = max(i__3,n); i__3 = *nns; for (ins = 1; ins <= i__3; ++ins) { nrhs = nsval[ins]; /* Computing MAX */ i__4 = 1, i__5 = (m + nrhs) * (n + 2), i__4 = max(i__4,i__5), i__5 = (n + nrhs) * (m + 2), i__4 = max(i__4,i__5), i__5 = m * n + (mnmin << 2) + max(m,n), i__4 = max( i__4,i__5), i__5 = (n << 1) + m; lwork = max(i__4,i__5); for (irank = 1; irank <= 2; ++irank) { for (iscale = 1; iscale <= 3; ++iscale) { itype = (irank - 1) * 3 + iscale; if (! dotype[itype]) { goto L100; } if (irank == 1) { /* Test CGELS Generate a matrix of scaling type ISCALE */ cqrt13_(&iscale, &m, &n, ©a[1], &lda, &norma, iseed); i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); xlaenv_(&c__3, &nxval[inb]); for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)trans = 'N'; nrows = m; ncols = n; } else { *(unsigned char *)trans = 'C'; nrows = n; ncols = m; } ldwork = max(1,ncols); /* Set up a consistent rhs */ if (ncols > 0) { i__5 = ncols * nrhs; clarnv_(&c__2, iseed, &i__5, &work[1]) ; i__5 = ncols * nrhs; r__1 = 1.f / (real) ncols; csscal_(&i__5, &r__1, &work[1], &c__1) ; } cgemm_(trans, "No transpose", &nrows, & nrhs, &ncols, &c_b1, ©a[1], & lda, &work[1], &ldwork, &c_b2, &b[ 1], &ldb); clacpy_("Full", &nrows, &nrhs, &b[1], & ldb, ©b[1], &ldb); /* Solve LS or overdetermined system */ if (m > 0 && n > 0) { clacpy_("Full", &m, &n, ©a[1], & lda, &a[1], &lda); clacpy_("Full", &nrows, &nrhs, ©b[ 1], &ldb, &b[1], &ldb); } s_copy(srnamc_1.srnamt, "CGELS ", (ftnlen) 6, (ftnlen)6); cgels_(trans, &m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &work[1], &lwork, & info); if (info != 0) { alaerh_(path, "CGELS ", &info, &c__0, trans, &m, &n, &nrhs, &c_n1, & nb, &itype, &nfail, &nerrs, nout); } /* Check correctness of results */ ldwork = max(1,nrows); if (nrows > 0 && nrhs > 0) { clacpy_("Full", &nrows, &nrhs, ©b[ 1], &ldb, &c__[1], &ldb); } cqrt16_(trans, &m, &n, &nrhs, ©a[1], & lda, &b[1], &ldb, &c__[1], &ldb, & rwork[1], result); if (itran == 1 && m >= n || itran == 2 && m < n) { /* Solving LS system */ result[1] = cqrt17_(trans, &c__1, &m, &n, &nrhs, ©a[1], &lda, & b[1], &ldb, ©b[1], &ldb, & c__[1], &work[1], &lwork); } else { /* Solving overdetermined system */ result[1] = cqrt14_(trans, &m, &n, & nrhs, ©a[1], &lda, &b[1], &ldb, &work[1], &lwork); } /* Print information about the tests that did not pass the threshold. */ for (k = 1; k <= 2; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&m, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&nrhs, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nb, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 2; /* L30: */ } /* L40: */ } } /* Generate a matrix of scaling type ISCALE and rank type IRANK. */ cqrt15_(&iscale, &irank, &m, &n, &nrhs, ©a[1], & lda, ©b[1], &ldb, ©s[1], &rank, & norma, &normb, iseed, &work[1], &lwork); /* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) */ i__4 = n; for (j = 1; j <= i__4; ++j) { iwork[j] = 0; /* L50: */ } ldwork = max(1,m); /* Test CGELSX CGELSX: Compute the minimum-norm solution X to min( norm( A * X - B ) ) using a complete orthogonal factorization. */ clacpy_("Full", &m, &n, ©a[1], &lda, &a[1], &lda); clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &b[1], & ldb); s_copy(srnamc_1.srnamt, "CGELSX", (ftnlen)6, (ftnlen) 6); cgelsx_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, & iwork[1], &rcond, &crank, &work[1], &rwork[1], &info); if (info != 0) { alaerh_(path, "CGELSX", &info, &c__0, " ", &m, &n, &nrhs, &c_n1, &nb, &itype, &nfail, & nerrs, nout); } /* workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS ) Test 3: Compute relative error in svd workspace: M*N + 4*MIN(M,N) + MAX(M,N) */ result[2] = cqrt12_(&crank, &crank, &a[1], &lda, & copys[1], &work[1], &lwork, &rwork[1]); /* Test 4: Compute error in solution workspace: M*NRHS + M */ clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &work[1], &ldwork); cqrt16_("No transpose", &m, &n, &nrhs, ©a[1], & lda, &b[1], &ldb, &work[1], &ldwork, &rwork[1] , &result[3]); /* Test 5: Check norm of r'*A workspace: NRHS*(M+N) */ result[4] = 0.f; if (m > crank) { result[4] = cqrt17_("No transpose", &c__1, &m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, & copyb[1], &ldb, &c__[1], &work[1], &lwork); } /* Test 6: Check if x is in the rowspace of A workspace: (M+NRHS)*(N+2) */ result[5] = 0.f; if (n > crank) { result[5] = cqrt14_("No transpose", &m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, &work[1], & lwork); } /* Print information about the tests that did not pass the threshold. */ for (k = 3; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__0, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 4; /* Loop for testing different block sizes. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); xlaenv_(&c__3, &nxval[inb]); /* Test CGELSY CGELSY: Compute the minimum-norm solution X to min( norm( A * X - B ) ) using the rank-revealing orthogonal factorization. */ clacpy_("Full", &m, &n, ©a[1], &lda, &a[1], & lda); clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &b[1], &ldb); /* Initialize vector IWORK. */ i__5 = n; for (j = 1; j <= i__5; ++j) { iwork[j] = 0; /* L70: */ } /* Set LWLSY to the adequate value. Computing MAX */ i__5 = mnmin << 1, i__6 = nb * (n + 1), i__5 = max(i__5,i__6), i__6 = mnmin + nb * nrhs; lwlsy = mnmin + max(i__5,i__6); lwlsy = max(1,lwlsy); s_copy(srnamc_1.srnamt, "CGELSY", (ftnlen)6, ( ftnlen)6); cgelsy_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, & iwork[1], &rcond, &crank, &work[1], & lwlsy, &rwork[1], &info); if (info != 0) { alaerh_(path, "CGELSY", &info, &c__0, " ", &m, &n, &nrhs, &c_n1, &nb, &itype, & nfail, &nerrs, nout); } /* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS) Test 7: Compute relative error in svd workspace: M*N + 4*MIN(M,N) + MAX(M,N) */ result[6] = cqrt12_(&crank, &crank, &a[1], &lda, & copys[1], &work[1], &lwork, &rwork[1]); /* Test 8: Compute error in solution workspace: M*NRHS + M */ clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &work[ 1], &ldwork); cqrt16_("No transpose", &m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, &work[1], &ldwork, & rwork[1], &result[7]); /* Test 9: Check norm of r'*A workspace: NRHS*(M+N) */ result[8] = 0.f; if (m > crank) { result[8] = cqrt17_("No transpose", &c__1, &m, &n, &nrhs, ©a[1], &lda, &b[1], & ldb, ©b[1], &ldb, &c__[1], &work[ 1], &lwork); } /* Test 10: Check if x is in the rowspace of A workspace: (M+NRHS)*(N+2) */ result[9] = 0.f; if (n > crank) { result[9] = cqrt14_("No transpose", &m, &n, & nrhs, ©a[1], &lda, &b[1], &ldb, & work[1], &lwork); } /* Test CGELSS CGELSS: Compute the minimum-norm solution X to min( norm( A * X - B ) ) using the SVD. */ clacpy_("Full", &m, &n, ©a[1], &lda, &a[1], & lda); clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &b[1], &ldb); s_copy(srnamc_1.srnamt, "CGELSS", (ftnlen)6, ( ftnlen)6); cgelss_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, & s[1], &rcond, &crank, &work[1], &lwork, & rwork[1], &info); if (info != 0) { alaerh_(path, "CGELSS", &info, &c__0, " ", &m, &n, &nrhs, &c_n1, &nb, &itype, & nfail, &nerrs, nout); } /* workspace used: 3*min(m,n) + max(2*min(m,n),nrhs,max(m,n)) Test 11: Compute relative error in svd */ if (rank > 0) { saxpy_(&mnmin, &c_b91, ©s[1], &c__1, &s[1] , &c__1); result[10] = sasum_(&mnmin, &s[1], &c__1) / sasum_(&mnmin, ©s[1], &c__1) / ( eps * (real) mnmin); } else { result[10] = 0.f; } /* Test 12: Compute error in solution */ clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &work[ 1], &ldwork); cqrt16_("No transpose", &m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, &work[1], &ldwork, & rwork[1], &result[11]); /* Test 13: Check norm of r'*A */ result[12] = 0.f; if (m > crank) { result[12] = cqrt17_("No transpose", &c__1, & m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, ©b[1], &ldb, &c__[1], &work[ 1], &lwork); } /* Test 14: Check if x is in the rowspace of A */ result[13] = 0.f; if (n > crank) { result[13] = cqrt14_("No transpose", &m, &n, & nrhs, ©a[1], &lda, &b[1], &ldb, & work[1], &lwork); } /* Test CGELSD CGELSD: Compute the minimum-norm solution X to min( norm( A * X - B ) ) using a divide and conquer SVD. */ xlaenv_(&c__9, &c__25); clacpy_("Full", &m, &n, ©a[1], &lda, &a[1], & lda); clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &b[1], &ldb); s_copy(srnamc_1.srnamt, "CGELSD", (ftnlen)6, ( ftnlen)6); cgelsd_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, & s[1], &rcond, &crank, &work[1], &lwork, & rwork[1], &iwork[1], &info); if (info != 0) { alaerh_(path, "CGELSD", &info, &c__0, " ", &m, &n, &nrhs, &c_n1, &nb, &itype, & nfail, &nerrs, nout); } /* Test 15: Compute relative error in svd */ if (rank > 0) { saxpy_(&mnmin, &c_b91, ©s[1], &c__1, &s[1] , &c__1); result[14] = sasum_(&mnmin, &s[1], &c__1) / sasum_(&mnmin, ©s[1], &c__1) / ( eps * (real) mnmin); } else { result[14] = 0.f; } /* Test 16: Compute error in solution */ clacpy_("Full", &m, &nrhs, ©b[1], &ldb, &work[ 1], &ldwork); cqrt16_("No transpose", &m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, &work[1], &ldwork, & rwork[1], &result[15]); /* Test 17: Check norm of r'*A */ result[16] = 0.f; if (m > crank) { result[16] = cqrt17_("No transpose", &c__1, & m, &n, &nrhs, ©a[1], &lda, &b[1], &ldb, ©b[1], &ldb, &c__[1], &work[ 1], &lwork); } /* Test 18: Check if x is in the rowspace of A */ result[17] = 0.f; if (n > crank) { result[17] = cqrt14_("No transpose", &m, &n, & nrhs, ©a[1], &lda, &b[1], &ldb, & work[1], &lwork); } /* Print information about the tests that did not pass the threshold. */ for (k = 7; k <= 18; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&itype, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L80: */ } nrun += 12; /* L90: */ } L100: ; } /* L110: */ } /* L120: */ } /* L130: */ } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CDRVLS */ } /* cdrvls_ */