#include "blaswrap.h" /* cdrvge.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static complex c_b20 = {0.f,0.f}; static integer c__6 = 6; static integer c__7 = 7; /* Subroutine */ int cdrvge_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex * a, complex *afac, complex *asav, complex *b, complex *bsav, complex * x, complex *xact, real *s, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*4] = "N" "R" "C" "B"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2," "\002, test(\002,i2,\002) =\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2," "\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002," "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; real r__1, r__2; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static integer i__, k, n, k1, nb, in, kl, ku, nt, lda; static char fact[1]; static integer ioff, mode; static real amax; static char path[3]; static integer imat, info; static char dist[1]; static real rdum[1]; static char type__[1]; static integer nrun; extern /* Subroutine */ int cget01_(integer *, integer *, complex *, integer *, complex *, integer *, integer *, real *, real *), cget02_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *); static integer ifact; extern /* Subroutine */ int cget04_(integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); static integer nfail, iseed[4], nfact; extern /* Subroutine */ int cget07_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); extern logical lsame_(char *, char *); static char equed[1]; static integer nbmin; static real rcond, roldc; extern /* Subroutine */ int cgesv_(integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); static integer nimat; static real roldi; extern doublereal sget06_(real *, real *); static real anorm; static integer itran; static logical equil; static real roldo; static char trans[1]; static integer izero, nerrs, lwork; static logical zerot; static char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *), claqge_(integer *, integer *, complex *, integer *, real *, real *, real *, real *, real *, char *); static logical prefac; static real colcnd; extern doublereal slamch_(char *); static real rcondc; extern /* Subroutine */ int cgeequ_(integer *, integer *, complex *, integer *, real *, real *, real *, real *, real *, integer *); static logical nofact; static integer iequed; extern /* Subroutine */ int cgetrf_(integer *, integer *, complex *, integer *, integer *, integer *); static real rcondi; extern /* Subroutine */ int cgetri_(integer *, complex *, integer *, integer *, complex *, integer *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *); extern doublereal clantr_(char *, char *, char *, integer *, integer *, complex *, integer *, real *); static real cndnum, anormi, rcondo, ainvnm; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static logical trfcon; static real anormo, rowcnd; extern /* Subroutine */ int cgesvx_(char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, char *, real *, real *, complex *, integer *, complex *, integer *, real * , real *, real *, complex *, real *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *), xlaenv_(integer *, integer *), cerrvx_(char *, integer *); static real result[7], rpvgrw; /* Fortran I/O blocks */ static cilist io___55 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___63 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___64 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___66 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___67 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___68 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___69 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CDRVGE tests the driver routines CGESV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX array, dimension (NMAX*NMAX) AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) ASAV (workspace) COMPLEX array, dimension (NMAX*NMAX) B (workspace) COMPLEX array, dimension (NMAX*NRHS) BSAV (workspace) COMPLEX array, dimension (NMAX*NRHS) X (workspace) COMPLEX array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) S (workspace) REAL array, dimension (2*NMAX) WORK (workspace) COMPLEX array, dimension (NMAX*max(3,NRHS)) RWORK (workspace) REAL array, dimension (2*NRHS+NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = imat >= 5 && imat <= 7; if (zerot && n < imat - 4) { goto L80; } /* Set up parameters with CLATB4 and generate a test matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cndnum, dist); rcondc = 1.f / cndnum; s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, & anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], & info); /* Check error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L80; } /* For types 5-7, zero one or more columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 5) { izero = 1; } else if (imat == 6) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 7) { i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L20: */ } } else { i__3 = n - izero + 1; claset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], & lda); } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ clacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 4; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L60; } rcondo = 0.f; rcondi = 0.f; } else if (! nofact) { /* Compute the condition number for comparison with the value returned by CGESVX (FACT = 'N' reuses the condition number from the previous iteration with FACT = 'F'). */ clacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to equilibrate the matrix A. */ cgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, &info); if (info == 0 && n > 0) { if (lsame_(equed, "R")) { rowcnd = 0.f; colcnd = 1.f; } else if (lsame_(equed, "C")) { rowcnd = 1.f; colcnd = 0.f; } else if (lsame_(equed, "B")) { rowcnd = 0.f; colcnd = 0.f; } /* Equilibrate the matrix. */ claqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, equed); } } /* Save the condition number of the non-equilibrated system for use in CGET04. */ if (equil) { roldo = rcondo; roldi = rcondi; } /* Compute the 1-norm and infinity-norm of A. */ anormo = clange_("1", &n, &n, &afac[1], &lda, &rwork[ 1]); anormi = clange_("I", &n, &n, &afac[1], &lda, &rwork[ 1]); /* Factor the matrix A. */ cgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info); /* Form the inverse of A. */ clacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda); lwork = *nmax * max(3,*nrhs); cgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, &info); /* Compute the 1-norm condition number of A. */ ainvnm = clange_("1", &n, &n, &a[1], &lda, &rwork[1]); if (anormo <= 0.f || ainvnm <= 0.f) { rcondo = 1.f; } else { rcondo = 1.f / anormo / ainvnm; } /* Compute the infinity-norm condition number of A. */ ainvnm = clange_("I", &n, &n, &a[1], &lda, &rwork[1]); if (anormi <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { /* Do for each value of TRANS. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Restore the matrix A. */ clacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen) 6); clarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; clacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact && itran == 1) { /* --- Test CGESV --- Compute the LU factorization of the matrix and solve the system. */ clacpy_("Full", &n, &n, &a[1], &lda, &afac[1], & lda); clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "CGESV ", (ftnlen)6, ( ftnlen)6); cgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], &lda, &info); /* Check error code from CGESV . */ if (info != izero) { alaerh_(path, "CGESV ", &info, &izero, " ", & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); } /* Reconstruct matrix from factors and compute residual. */ cget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[1], result); nt = 1; if (izero == 0) { /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &b[1], &lda, &work[ 1], &lda); cget02_("No transpose", &n, &n, nrhs, &a[1], & lda, &x[1], &lda, &work[1], &lda, & rwork[1], &result[1]); /* Check solution from generated exact solution. */ cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___55.ciunit = *nout; s_wsfe(&io___55); do_fio(&c__1, "CGESV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; } /* --- Test CGESVX --- */ if (! prefac) { claset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], &lda); } claset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and EQUED = 'R', 'C', or 'B'. */ claqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } /* Solve the system and compute the condition number and error bounds using CGESVX. */ s_copy(srnamc_1.srnamt, "CGESVX", (ftnlen)6, (ftnlen) 6); cgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[ 1], &lda, &x[1], &lda, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from CGESVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "CGESVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); } /* Compare RWORK(2*NRHS+1) from CGESVX with the computed reciprocal pivot growth factor RPVGRW */ if (info != 0) { rpvgrw = clantr_("M", "U", "N", &info, &info, & afac[1], &lda, rdum); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = clange_("M", &n, &info, &a[1], &lda, rdum) / rpvgrw; } } else { rpvgrw = clantr_("M", "U", "N", &n, &n, &afac[1], &lda, rdum); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = clange_("M", &n, &n, &a[1], &lda, rdum) / rpvgrw; } } /* Computing MAX */ r__2 = rwork[(*nrhs << 1) + 1]; result[6] = (r__1 = rpvgrw - rwork[(*nrhs << 1) + 1], dabs(r__1)) / dmax(r__2,rpvgrw) / slamch_( "E"); if (! prefac) { /* Reconstruct matrix from factors and compute residual. */ cget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); cget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1] , &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative refinement. */ cget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { trfcon = TRUE_; } /* Compare RCOND from CGESVX with the computed value in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___62.ciunit = *nout; s_wsfe(&io___62); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); } else { io___63.ciunit = *nout; s_wsfe(&io___63); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; } /* L40: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___64.ciunit = *nout; s_wsfe(&io___64); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); } else { io___65.ciunit = *nout; s_wsfe(&io___65); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___66.ciunit = *nout; s_wsfe(&io___66); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(real)); e_wsfe(); } else { io___67.ciunit = *nout; s_wsfe(&io___67); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___68.ciunit = *nout; s_wsfe(&io___68); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(real)); e_wsfe(); } else { io___69.ciunit = *nout; s_wsfe(&io___69); do_fio(&c__1, "CGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } } /* L50: */ } L60: ; } /* L70: */ } L80: ; } /* L90: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CDRVGE */ } /* cdrvge_ */