#include "blaswrap.h" /* cchkhp.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__0 = 0; static integer c_n1 = -1; static integer c__2 = 2; static integer c__1 = 1; static integer c__8 = 8; /* Subroutine */ int cchkhp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, real *thresh, logical *tsterr, integer * nmax, complex *a, complex *afac, complex *ainv, complex *b, complex * x, complex *xact, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, info; static char path[3], dist[1]; static integer irhs, nrhs; static char uplo[1], type__[1]; static integer nrun; extern /* Subroutine */ int alahd_(integer *, char *), cget04_( integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); static integer nfail, iseed[4]; extern /* Subroutine */ int chpt01_(char *, integer *, complex *, complex *, integer *, complex *, integer *, real *, real *); extern logical lsame_(char *, char *); static real rcond; static integer nimat; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int cppt02_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, real *, real *), cppt03_(char *, integer *, complex *, complex *, complex *, integer *, real *, real *, real *); static real anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), cppt05_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); static integer iuplo, izero, nerrs; static logical zerot; static char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *), claipd_(integer *, complex *, integer *, integer *); extern doublereal clanhp_(char *, char *, integer *, complex *, real *); static real rcondc; extern /* Subroutine */ int chpcon_(char *, integer *, complex *, integer *, real *, real *, complex *, integer *); static char packit[1]; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); static real cndnum; extern /* Subroutine */ int chprfs_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), chptrf_( char *, integer *, complex *, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex * , integer *, complex *, integer *), chptri_(char *, integer *, complex *, integer *, complex *, integer *); static logical trfcon; extern /* Subroutine */ int chptrs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *), cerrsy_( char *, integer *); static real result[8]; /* Fortran I/O blocks */ static cilist io___38 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CCHKHP tests CHPTRF, -TRI, -TRS, -RFS, and -CON Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2) AFAC (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2) AINV (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2) B (workspace) COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) COMPLEX array, dimension (NMAX*NSMAX) XACT (workspace) COMPLEX array, dimension (NMAX*NSMAX) WORK (workspace) COMPLEX array, dimension (NMAX*max(2,NSMAX)) RWORK (workspace) REAL array, dimension (NMAX+2*NSMAX) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 10; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L160; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L160; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { *(unsigned char *)packit = 'C'; } else { *(unsigned char *)packit = 'R'; } /* Set up parameters with CLATB4 and generate a test matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L150; } /* For types 3-6, zero one or more rows and columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L50: */ } } } else { ioff = 0; if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L60: */ } ioff += j; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L80: */ } ioff = ioff + n - j; /* L90: */ } } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { claipd_(&n, &a[1], &c__2, &c__1); } else { claipd_(&n, &a[1], &n, &c_n1); } /* Compute the L*D*L' or U*D*U' factorization of the matrix. */ npp = n * (n + 1) / 2; ccopy_(&npp, &a[1], &c__1, &afac[1], &c__1); s_copy(srnamc_1.srnamt, "CHPTRF", (ftnlen)6, (ftnlen)6); chptrf_(uplo, &n, &afac[1], &iwork[1], &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from CHPTRF. */ if (info != k) { alaerh_(path, "CHPTRF", &info, &k, uplo, &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 Reconstruct matrix from factors and compute residual. */ chpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 Form the inverse and compute the residual. */ if (! trfcon) { ccopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); s_copy(srnamc_1.srnamt, "CHPTRI", (ftnlen)6, (ftnlen)6); chptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info); /* Check error code from CHPTRI. */ if (info != 0) { alaerh_(path, "CHPTRI", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } cppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[ 1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.f; goto L140; } i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)6); clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "CHPTRS", (ftnlen)6, (ftnlen)6); chptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, &info); /* Check error code from CHPTRS. */ if (info != 0) { alaerh_(path, "CHPTRS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } clacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); cppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], & lda, &rwork[1], &result[2]); /* + TEST 4 Check solution from generated exact solution. */ cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); /* + TESTS 5, 6, and 7 Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "CHPRFS", (ftnlen)6, (ftnlen)6); chprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1] , &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from CHPRFS. */ if (info != 0) { alaerh_(path, "CHPRFS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[4]); cppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], & result[5]); /* Print information about the tests that did not pass the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = clanhp_("1", uplo, &n, &a[1], &rwork[1]); s_copy(srnamc_1.srnamt, "CHPCON", (ftnlen)6, (ftnlen)6); chpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[ 1], &info); /* Check error code from CHPCON. */ if (info != 0) { alaerh_(path, "CHPCON", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = sget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } /* L170: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CCHKHP */ } /* cchkhp_ */