#include "blaswrap.h" /* zchkst.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; static integer c__0 = 0; static integer c__6 = 6; static doublereal c_b39 = 1.; static doublereal c_b49 = 0.; static integer c__4 = 4; static integer c__3 = 3; static integer c__10 = 10; static integer c__11 = 11; /* Subroutine */ int zchkst_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, doublecomplex *a, integer *lda, doublecomplex *ap, doublereal *sd, doublereal *se, doublereal *d1, doublereal *d2, doublereal *d3, doublereal *d4, doublereal *d5, doublereal *wa1, doublereal *wa2, doublereal *wa3, doublereal *wr, doublecomplex *u, integer *ldu, doublecomplex *v, doublecomplex *vp, doublecomplex *tau, doublecomplex *z__, doublecomplex *work, integer *lwork, doublereal * rwork, integer *lrwork, integer *iwork, integer *liwork, doublereal * result, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8,9,9,9,9,9,10 }; static integer kmagn[21] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,1,1,1,2,3,1 }; static integer kmode[21] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,4,3,1,4,4,3 }; /* Format strings */ static char fmt_9999[] = "(\002 ZCHKST: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9998[] = "(/1x,a3,\002 -- Complex Hermitian eigenvalue p" "roblem\002)"; static char fmt_9997[] = "(\002 Matrix types (see ZCHKST for details):" " \002)"; static char fmt_9996[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 5=Diagonal: clustered ent" "ries.\002,/\002 2=Identity matrix. \002,\002" " 6=Diagonal: large, evenly spaced.\002,/\002 3=Diagonal: evenl" "y spaced entries. \002,\002 7=Diagonal: small, evenly spaced." "\002,/\002 4=Diagonal: geometr. spaced entries.\002)"; static char fmt_9995[] = "(\002 Dense \002,a,\002 Matrices:\002,/\002 8" "=Evenly spaced eigenvals. \002,\002 12=Small, evenly " "spaced eigenvals.\002,/\002 9=Geometrically spaced eigenvals. " " \002,\002 13=Matrix with random O(1) entries.\002,/\002 10=Cl" "ustered eigenvalues. \002,\002 14=Matrix with large" " random entries.\002,/\002 11=Large, evenly spaced eigenvals. " " \002,\002 15=Matrix with small random entries.\002)"; static char fmt_9994[] = "(\002 16=Positive definite, evenly spaced eige" "nvalues\002,/\002 17=Positive definite, geometrically spaced eig" "envlaues\002,/\002 18=Positive definite, clustered eigenvalue" "s\002,/\002 19=Positive definite, small evenly spaced eigenvalues" "\002,/\002 20=Positive definite, large evenly spaced eigenvalue" "s\002,/\002 21=Diagonally dominant tridiagonal, geometrically" "\002,\002 spaced eigenvalues\002)"; static char fmt_9987[] = "(/\002Test performed: see ZCHKST for details" ".\002,/)"; static char fmt_9989[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2" ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002" ",0p,f8.2)"; static char fmt_9988[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2" ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002" ",1p,d10.3)"; /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1, d__2, d__3, d__4; doublecomplex z__1; /* Builtin functions */ double log(doublereal), sqrt(doublereal); integer pow_ii(integer *, integer *); double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, j, m, n, m2, m3, jc, il, jr, iu; static doublereal vl, vu; static integer nap, lgn; static doublereal ulp; static integer inde; static doublereal cond; static integer nmax; static doublereal unfl, ovfl, temp1, temp2, temp3, temp4; extern doublereal dsxt1_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); static logical badnn; static integer imode, lwedc; static doublereal dumma[1]; static integer iinfo; static doublereal aninv, anorm; extern /* Subroutine */ int zhet21_(integer *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublereal *, doublereal *); static integer itemp; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer nmats, jsize; extern /* Subroutine */ int zhpt21_(integer *, char *, integer *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublereal *, doublereal *); static integer nerrs, itype, jtype, ntest; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zstt21_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *), zstt22_(integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static integer iseed2[4], log2ui; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *), dlarnd_(integer *, integer *); static integer liwedc, nblock; extern /* Subroutine */ int dstech_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); static integer idumma[1]; extern /* Subroutine */ int xerbla_(char *, integer *); static integer ioldsd[4]; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer lrwedc; static doublereal abstol; extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *), dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), zstedc_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *, integer *); static integer indrwk; extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); static logical tryrac; static integer nsplit; static doublereal rtunfl, rtovfl, ulpinv; static integer mtypes, ntestt; extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *), zlatmr_(integer *, integer *, char *, integer *, char *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, doublecomplex *, integer *, doublereal *, doublecomplex * , integer *, doublereal *, char *, integer *, integer *, integer * , doublereal *, doublereal *, char *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zpteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zstemr_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, doublecomplex *, integer *, integer *, integer *, logical *, doublereal *, integer *, integer *, integer *, integer *), zstein_( integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *), zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zungtr_(char *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___67 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___68 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___71 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___73 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___74 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___75 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___78 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___79 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___80 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___81 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___82 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___83 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___84 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___85 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___86 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___87 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___88 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___89 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___90 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___91 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___92 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___93 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___94 = { 0, 0, 0, fmt_9987, 0 }; static cilist io___95 = { 0, 0, 0, fmt_9989, 0 }; static cilist io___96 = { 0, 0, 0, fmt_9988, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZCHKST checks the Hermitian eigenvalue problem routines. ZHETRD factors A as U S U* , where * means conjugate transpose, S is real symmetric tridiagonal, and U is unitary. ZHETRD can use either just the lower or just the upper triangle of A; ZCHKST checks both cases. U is represented as a product of Householder transformations, whose vectors are stored in the first n-1 columns of V, and whose scale factors are in TAU. ZHPTRD does the same as ZHETRD, except that A and V are stored in "packed" format. ZUNGTR constructs the matrix U from the contents of V and TAU. ZUPGTR constructs the matrix U from the contents of VP and TAU. ZSTEQR factors S as Z D1 Z* , where Z is the unitary matrix of eigenvectors and D1 is a diagonal matrix with the eigenvalues on the diagonal. D2 is the matrix of eigenvalues computed when Z is not computed. DSTERF computes D3, the matrix of eigenvalues, by the PWK method, which does not yield eigenvectors. ZPTEQR factors S as Z4 D4 Z4* , for a Hermitian positive definite tridiagonal matrix. D5 is the matrix of eigenvalues computed when Z is not computed. DSTEBZ computes selected eigenvalues. WA1, WA2, and WA3 will denote eigenvalues computed to high absolute accuracy, with different range options. WR will denote eigenvalues computed to high relative accuracy. ZSTEIN computes Y, the eigenvectors of S, given the eigenvalues. ZSTEDC factors S as Z D1 Z* , where Z is the unitary matrix of eigenvectors and D1 is a diagonal matrix with the eigenvalues on the diagonal ('I' option). It may also update an input unitary matrix, usually the output from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may also just compute eigenvalues ('N' option). ZSTEMR factors S as Z D1 Z* , where Z is the unitary matrix of eigenvectors and D1 is a diagonal matrix with the eigenvalues on the diagonal ('I' option). ZSTEMR uses the Relatively Robust Representation whenever possible. When ZCHKST is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix will be generated and used to test the Hermitian eigenroutines. For each matrix, a number of tests will be performed: (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... ) (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... ) (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... ) (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... ) (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR. (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...) (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...) (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...) (12) | D1 - D3 | / ( |D1| ulp ) DSTERF (13) 0 if the true eigenvalues (computed by sturm count) of S are within THRESH of those in D1. 2*THRESH if they are not. (Tested using DSTECH) For S positive definite, (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...) (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...) (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...) When S is also diagonally dominant by the factor gamma < 1, (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) , i omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 DSTEBZ( 'A', 'E', ...) (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...) (19) ( max { min | WA2(i)-WA3(j) | } + i j max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) i j DSTEBZ( 'I', 'E', ...) (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I') (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I') (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V') (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V') (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and ZSTEDC('N') Test 27 is disabled at the moment because ZSTEMR does not guarantee high relatvie accuracy. (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) , i omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 ZSTEMR('V', 'A') (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) , i omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 ZSTEMR('V', 'I') Tests 29 through 34 are disable at present because ZSTEMR does not handle partial specturm requests. (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I') (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I') (31) ( max { min | WA2(i)-WA3(j) | } + i j max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) i j ZSTEMR('N', 'I') vs. CSTEMR('V', 'I') (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V') (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V') (34) ( max { min | WA2(i)-WA3(j) | } + i j max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) i j ZSTEMR('N', 'V') vs. CSTEMR('V', 'V') (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A') (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A') (37) ( max { min | WA2(i)-WA3(j) | } + i j max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) i j ZSTEMR('N', 'A') vs. CSTEMR('V', 'A') The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (6) Same as (4), but multiplied by SQRT( overflow threshold ) (7) Same as (4), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U* D U, where U is unitary and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (9) A matrix of the form U* D U, where U is unitary and D has geometrically spaced entries 1, ..., ULP with random signs on the diagonal. (10) A matrix of the form U* D U, where U is unitary and D has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) Hermitian matrix with random entries chosen from (-1,1). (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold ) (16) Same as (8), but diagonal elements are all positive. (17) Same as (9), but diagonal elements are all positive. (18) Same as (10), but diagonal elements are all positive. (19) Same as (16), but multiplied by SQRT( overflow threshold ) (20) Same as (16), but multiplied by SQRT( underflow threshold ) (21) A diagonally dominant tridiagonal matrix with geometrically spaced diagonal entries 1, ..., ULP. Arguments ========= NSIZES (input) INTEGER The number of sizes of matrices to use. If it is zero, ZCHKST does nothing. It must be at least zero. NN (input) INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. NTYPES (input) INTEGER The number of elements in DOTYPE. If it is zero, ZCHKST does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to ZCHKST to continue the same random number sequence. THRESH (input) DOUBLE PRECISION A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. NOUNIT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) A (input/workspace/output) COMPLEX*16 array of dimension ( LDA , max(NN) ) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. LDA (input) INTEGER The leading dimension of A. It must be at least 1 and at least max( NN ). AP (workspace) COMPLEX*16 array of dimension( max(NN)*max(NN+1)/2 ) The matrix A stored in packed format. SD (workspace/output) DOUBLE PRECISION array of dimension( max(NN) ) The diagonal of the tridiagonal matrix computed by ZHETRD. On exit, SD and SE contain the tridiagonal form of the matrix in A. SE (workspace/output) DOUBLE PRECISION array of dimension( max(NN) ) The off-diagonal of the tridiagonal matrix computed by ZHETRD. On exit, SD and SE contain the tridiagonal form of the matrix in A. D1 (workspace/output) DOUBLE PRECISION array of dimension( max(NN) ) The eigenvalues of A, as computed by ZSTEQR simlutaneously with Z. On exit, the eigenvalues in D1 correspond with the matrix in A. D2 (workspace/output) DOUBLE PRECISION array of dimension( max(NN) ) The eigenvalues of A, as computed by ZSTEQR if Z is not computed. On exit, the eigenvalues in D2 correspond with the matrix in A. D3 (workspace/output) DOUBLE PRECISION array of dimension( max(NN) ) The eigenvalues of A, as computed by DSTERF. On exit, the eigenvalues in D3 correspond with the matrix in A. U (workspace/output) COMPLEX*16 array of dimension( LDU, max(NN) ). The unitary matrix computed by ZHETRD + ZUNGTR. LDU (input) INTEGER The leading dimension of U, Z, and V. It must be at least 1 and at least max( NN ). V (workspace/output) COMPLEX*16 array of dimension( LDU, max(NN) ). The Housholder vectors computed by ZHETRD in reducing A to tridiagonal form. The vectors computed with UPLO='U' are in the upper triangle, and the vectors computed with UPLO='L' are in the lower triangle. (As described in ZHETRD, the sub- and superdiagonal are not set to 1, although the true Householder vector has a 1 in that position. The routines that use V, such as ZUNGTR, set those entries to 1 before using them, and then restore them later.) VP (workspace) COMPLEX*16 array of dimension( max(NN)*max(NN+1)/2 ) The matrix V stored in packed format. TAU (workspace/output) COMPLEX*16 array of dimension( max(NN) ) The Householder factors computed by ZHETRD in reducing A to tridiagonal form. Z (workspace/output) COMPLEX*16 array of dimension( LDU, max(NN) ). The unitary matrix of eigenvectors computed by ZSTEQR, ZPTEQR, and ZSTEIN. WORK (workspace/output) COMPLEX*16 array of dimension( LWORK ) LWORK (input) INTEGER The number of entries in WORK. This must be at least 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 where Nmax = max( NN(j), 2 ) and lg = log base 2. IWORK (workspace/output) INTEGER array, dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax ) where Nmax = max( NN(j), 2 ) and lg = log base 2. Workspace. RWORK (workspace/output) DOUBLE PRECISION array of dimension( ??? ) RESULT (output) DOUBLE PRECISION array, dimension (26) The values computed by the tests described above. The values are currently limited to 1/ulp, to avoid overflow. INFO (output) INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -5: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -23: LDU < 1 or LDU < NMAX. -29: LWORK too small. If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF, or ZUNMC2 returns an error code, the absolute value of it is returned. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NTEST The number of tests performed, or which can be performed so far, for the current matrix. NTESTT The total number of tests performed so far. NBLOCK Blocksize as returned by ENVIR. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far. COND, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL Square roots of the previous 2 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ap; --sd; --se; --d1; --d2; --d3; --d4; --d5; --wa1; --wa2; --wa3; --wr; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; v_dim1 = *ldu; v_offset = 1 + v_dim1; v -= v_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --vp; --tau; --work; --rwork; --iwork; --result; /* Function Body Keep ftnchek happy */ idumma[0] = 1; /* Check for errors */ ntestt = 0; *info = 0; /* Important constants */ badnn = FALSE_; tryrac = TRUE_; nmax = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } nblock = ilaenv_(&c__1, "ZHETRD", "L", &nmax, &c_n1, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); /* Computing MIN */ i__1 = nmax, i__2 = max(1,nblock); nblock = min(i__1,i__2); /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*lda < nmax) { *info = -9; } else if (*ldu < nmax) { *info = -23; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = max(2,nmax); if (i__1 * i__1 << 1 > *lwork) { *info = -29; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZCHKST", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Epsilon") * dlamch_("Base"); ulpinv = 1. / ulp; log2ui = (integer) (log(ulpinv) / log(2.)); rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); /* Loop over sizes, types */ for (i__ = 1; i__ <= 4; ++i__) { iseed2[i__ - 1] = iseed[i__]; /* L20: */ } nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (n > 0) { lgn = (integer) (log((doublereal) n) / log(2.)); if (pow_ii(&c__2, &lgn) < n) { ++lgn; } if (pow_ii(&c__2, &lgn) < n) { ++lgn; } /* Computing 2nd power */ i__2 = n; lwedc = (n << 2) + 1 + (n << 1) * lgn + i__2 * i__2 * 3; /* Computing 2nd power */ i__2 = n; lrwedc = n * 3 + 1 + (n << 1) * lgn + i__2 * i__2 * 3; liwedc = n * 6 + 6 + n * 5 * lgn; } else { lwedc = 8; lrwedc = 7; liwedc = 12; } nap = n * (n + 1) / 2; aninv = 1. / (doublereal) max(1,n); if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L300; } ++nmats; ntest = 0; for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L30: */ } /* Compute "A" Control parameters: KMAGN KMODE KTYPE =1 O(1) clustered 1 zero =2 large clustered 2 identity =3 small exponential (none) =4 arithmetic diagonal, (w/ eigenvalues) =5 random log Hermitian, w/ eigenvalues =6 random (none) =7 random diagonal =8 random Hermitian =9 positive definite =10 diagonally dominant tridiagonal */ if (mtypes > 21) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * aninv; goto L70; L60: anorm = rtunfl * n * ulpinv; goto L70; L70: zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; if (jtype <= 15) { cond = ulpinv; } else { cond = ulpinv * aninv / 10.; } /* Special Matrices -- Identity & Jordan block Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jc = 1; jc <= i__3; ++jc) { i__4 = jc + jc * a_dim1; a[i__4].r = anorm, a[i__4].i = 0.; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[ 1], &iinfo); } else if (itype == 5) { /* Hermitian, eigenvalues specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], & iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ zlatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, & c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Hermitian, random eigenvalues */ zlatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, & c_b49, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* Positive definite, eigenvalues specified. */ zlatms_(&n, &n, "S", &iseed[1], "P", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], & iinfo); } else if (itype == 10) { /* Positive definite tridiagonal, eigenvalues specified. */ zlatms_(&n, &n, "S", &iseed[1], "P", &rwork[1], &imode, &cond, &anorm, &c__1, &c__1, "N", &a[a_offset], lda, &work[ 1], &iinfo); i__3 = n; for (i__ = 2; i__ <= i__3; ++i__) { temp1 = z_abs(&a[i__ - 1 + i__ * a_dim1]); i__4 = i__ - 1 + (i__ - 1) * a_dim1; i__5 = i__ + i__ * a_dim1; z__1.r = a[i__4].r * a[i__5].r - a[i__4].i * a[i__5].i, z__1.i = a[i__4].r * a[i__5].i + a[i__4].i * a[ i__5].r; temp2 = sqrt(z_abs(&z__1)); if (temp1 > temp2 * .5) { i__4 = i__ - 1 + i__ * a_dim1; i__5 = i__ - 1 + i__ * a_dim1; d__1 = temp2 * .5 / (unfl + temp1); z__1.r = d__1 * a[i__5].r, z__1.i = d__1 * a[i__5].i; a[i__4].r = z__1.r, a[i__4].i = z__1.i; i__4 = i__ + (i__ - 1) * a_dim1; d_cnjg(&z__1, &a[i__ - 1 + i__ * a_dim1]); a[i__4].r = z__1.r, a[i__4].i = z__1.i; } /* L90: */ } } else { iinfo = 1; } if (iinfo != 0) { io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call ZHETRD and ZUNGTR to compute S and U from upper triangle. */ zlacpy_("U", &n, &n, &a[a_offset], lda, &v[v_offset], ldu); ntest = 1; zhetrd_("U", &n, &v[v_offset], ldu, &sd[1], &se[1], &tau[1], & work[1], lwork, &iinfo); if (iinfo != 0) { io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, "ZHETRD(U)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[1] = ulpinv; goto L280; } } zlacpy_("U", &n, &n, &v[v_offset], ldu, &u[u_offset], ldu); ntest = 2; zungtr_("U", &n, &u[u_offset], ldu, &tau[1], &work[1], lwork, & iinfo); if (iinfo != 0) { io___44.ciunit = *nounit; s_wsfe(&io___44); do_fio(&c__1, "ZUNGTR(U)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[2] = ulpinv; goto L280; } } /* Do tests 1 and 2 */ zhet21_(&c__2, "Upper", &n, &c__1, &a[a_offset], lda, &sd[1], &se[ 1], &u[u_offset], ldu, &v[v_offset], ldu, &tau[1], &work[ 1], &rwork[1], &result[1]); zhet21_(&c__3, "Upper", &n, &c__1, &a[a_offset], lda, &sd[1], &se[ 1], &u[u_offset], ldu, &v[v_offset], ldu, &tau[1], &work[ 1], &rwork[1], &result[2]); /* Call ZHETRD and ZUNGTR to compute S and U from lower triangle, do tests. */ zlacpy_("L", &n, &n, &a[a_offset], lda, &v[v_offset], ldu); ntest = 3; zhetrd_("L", &n, &v[v_offset], ldu, &sd[1], &se[1], &tau[1], & work[1], lwork, &iinfo); if (iinfo != 0) { io___45.ciunit = *nounit; s_wsfe(&io___45); do_fio(&c__1, "ZHETRD(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[3] = ulpinv; goto L280; } } zlacpy_("L", &n, &n, &v[v_offset], ldu, &u[u_offset], ldu); ntest = 4; zungtr_("L", &n, &u[u_offset], ldu, &tau[1], &work[1], lwork, & iinfo); if (iinfo != 0) { io___46.ciunit = *nounit; s_wsfe(&io___46); do_fio(&c__1, "ZUNGTR(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[4] = ulpinv; goto L280; } } zhet21_(&c__2, "Lower", &n, &c__1, &a[a_offset], lda, &sd[1], &se[ 1], &u[u_offset], ldu, &v[v_offset], ldu, &tau[1], &work[ 1], &rwork[1], &result[3]); zhet21_(&c__3, "Lower", &n, &c__1, &a[a_offset], lda, &sd[1], &se[ 1], &u[u_offset], ldu, &v[v_offset], ldu, &tau[1], &work[ 1], &rwork[1], &result[4]); /* Store the upper triangle of A in AP */ i__ = 0; i__3 = n; for (jc = 1; jc <= i__3; ++jc) { i__4 = jc; for (jr = 1; jr <= i__4; ++jr) { ++i__; i__5 = i__; i__6 = jr + jc * a_dim1; ap[i__5].r = a[i__6].r, ap[i__5].i = a[i__6].i; /* L110: */ } /* L120: */ } /* Call ZHPTRD and ZUPGTR to compute S and U from AP */ zcopy_(&nap, &ap[1], &c__1, &vp[1], &c__1); ntest = 5; zhptrd_("U", &n, &vp[1], &sd[1], &se[1], &tau[1], &iinfo); if (iinfo != 0) { io___48.ciunit = *nounit; s_wsfe(&io___48); do_fio(&c__1, "ZHPTRD(U)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[5] = ulpinv; goto L280; } } ntest = 6; zupgtr_("U", &n, &vp[1], &tau[1], &u[u_offset], ldu, &work[1], & iinfo); if (iinfo != 0) { io___49.ciunit = *nounit; s_wsfe(&io___49); do_fio(&c__1, "ZUPGTR(U)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[6] = ulpinv; goto L280; } } /* Do tests 5 and 6 */ zhpt21_(&c__2, "Upper", &n, &c__1, &ap[1], &sd[1], &se[1], &u[ u_offset], ldu, &vp[1], &tau[1], &work[1], &rwork[1], & result[5]); zhpt21_(&c__3, "Upper", &n, &c__1, &ap[1], &sd[1], &se[1], &u[ u_offset], ldu, &vp[1], &tau[1], &work[1], &rwork[1], & result[6]); /* Store the lower triangle of A in AP */ i__ = 0; i__3 = n; for (jc = 1; jc <= i__3; ++jc) { i__4 = n; for (jr = jc; jr <= i__4; ++jr) { ++i__; i__5 = i__; i__6 = jr + jc * a_dim1; ap[i__5].r = a[i__6].r, ap[i__5].i = a[i__6].i; /* L130: */ } /* L140: */ } /* Call ZHPTRD and ZUPGTR to compute S and U from AP */ zcopy_(&nap, &ap[1], &c__1, &vp[1], &c__1); ntest = 7; zhptrd_("L", &n, &vp[1], &sd[1], &se[1], &tau[1], &iinfo); if (iinfo != 0) { io___50.ciunit = *nounit; s_wsfe(&io___50); do_fio(&c__1, "ZHPTRD(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[7] = ulpinv; goto L280; } } ntest = 8; zupgtr_("L", &n, &vp[1], &tau[1], &u[u_offset], ldu, &work[1], & iinfo); if (iinfo != 0) { io___51.ciunit = *nounit; s_wsfe(&io___51); do_fio(&c__1, "ZUPGTR(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[8] = ulpinv; goto L280; } } zhpt21_(&c__2, "Lower", &n, &c__1, &ap[1], &sd[1], &se[1], &u[ u_offset], ldu, &vp[1], &tau[1], &work[1], &rwork[1], & result[7]); zhpt21_(&c__3, "Lower", &n, &c__1, &ap[1], &sd[1], &se[1], &u[ u_offset], ldu, &vp[1], &tau[1], &work[1], &rwork[1], & result[8]); /* Call ZSTEQR to compute D1, D2, and Z, do tests. Compute D1 and Z */ dcopy_(&n, &sd[1], &c__1, &d1[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 9; zsteqr_("V", &n, &d1[1], &rwork[1], &z__[z_offset], ldu, &rwork[n + 1], &iinfo); if (iinfo != 0) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, "ZSTEQR(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[9] = ulpinv; goto L280; } } /* Compute D2 */ dcopy_(&n, &sd[1], &c__1, &d2[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 11; zsteqr_("N", &n, &d2[1], &rwork[1], &work[1], ldu, &rwork[n + 1], &iinfo); if (iinfo != 0) { io___53.ciunit = *nounit; s_wsfe(&io___53); do_fio(&c__1, "ZSTEQR(N)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[11] = ulpinv; goto L280; } } /* Compute D3 (using PWK method) */ dcopy_(&n, &sd[1], &c__1, &d3[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 12; dsterf_(&n, &d3[1], &rwork[1], &iinfo); if (iinfo != 0) { io___54.ciunit = *nounit; s_wsfe(&io___54); do_fio(&c__1, "DSTERF", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[12] = ulpinv; goto L280; } } /* Do Tests 9 and 10 */ zstt21_(&n, &c__0, &sd[1], &se[1], &d1[1], dumma, &z__[z_offset], ldu, &work[1], &rwork[1], &result[9]); /* Do Tests 11 and 12 */ temp1 = 0.; temp2 = 0.; temp3 = 0.; temp4 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max( d__3,d__4), d__4 = (d__2 = d2[j], abs(d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d1[j] - d2[j], abs(d__1)); temp2 = max(d__2,d__3); /* Computing MAX */ d__3 = temp3, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max( d__3,d__4), d__4 = (d__2 = d3[j], abs(d__2)); temp3 = max(d__3,d__4); /* Computing MAX */ d__2 = temp4, d__3 = (d__1 = d1[j] - d3[j], abs(d__1)); temp4 = max(d__2,d__3); /* L150: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[11] = temp2 / max(d__1,d__2); /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp3,temp4); result[12] = temp4 / max(d__1,d__2); /* Do Test 13 -- Sturm Sequence Test of Eigenvalues Go up by factors of two until it succeeds */ ntest = 13; temp1 = *thresh * (.5 - ulp); i__3 = log2ui; for (j = 0; j <= i__3; ++j) { dstech_(&n, &sd[1], &se[1], &d1[1], &temp1, &rwork[1], &iinfo) ; if (iinfo == 0) { goto L170; } temp1 *= 2.; /* L160: */ } L170: result[13] = temp1; /* For positive definite matrices ( JTYPE.GT.15 ) call ZPTEQR and do tests 14, 15, and 16 . */ if (jtype > 15) { /* Compute D4 and Z4 */ dcopy_(&n, &sd[1], &c__1, &d4[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 14; zpteqr_("V", &n, &d4[1], &rwork[1], &z__[z_offset], ldu, & rwork[n + 1], &iinfo); if (iinfo != 0) { io___58.ciunit = *nounit; s_wsfe(&io___58); do_fio(&c__1, "ZPTEQR(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[14] = ulpinv; goto L280; } } /* Do Tests 14 and 15 */ zstt21_(&n, &c__0, &sd[1], &se[1], &d4[1], dumma, &z__[ z_offset], ldu, &work[1], &rwork[1], &result[14]); /* Compute D5 */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 16; zpteqr_("N", &n, &d5[1], &rwork[1], &z__[z_offset], ldu, & rwork[n + 1], &iinfo); if (iinfo != 0) { io___59.ciunit = *nounit; s_wsfe(&io___59); do_fio(&c__1, "ZPTEQR(N)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[16] = ulpinv; goto L280; } } /* Do Test 16 */ temp1 = 0.; temp2 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d4[j], abs(d__1)), d__3 = max(d__3,d__4), d__4 = (d__2 = d5[j], abs(d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d4[j] - d5[j], abs(d__1)); temp2 = max(d__2,d__3); /* L180: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * 100. * max(temp1,temp2); result[16] = temp2 / max(d__1,d__2); } else { result[14] = 0.; result[15] = 0.; result[16] = 0.; } /* Call DSTEBZ with different options and do tests 17-18. If S is positive definite and diagonally dominant, ask for all eigenvalues with high relative accuracy. */ vl = 0.; vu = 0.; il = 0; iu = 0; if (jtype == 21) { ntest = 17; abstol = unfl + unfl; dstebz_("A", "E", &n, &vl, &vu, &il, &iu, &abstol, &sd[1], & se[1], &m, &nsplit, &wr[1], &iwork[1], &iwork[n + 1], &rwork[1], &iwork[(n << 1) + 1], &iinfo); if (iinfo != 0) { io___67.ciunit = *nounit; s_wsfe(&io___67); do_fio(&c__1, "DSTEBZ(A,rel)", (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[17] = ulpinv; goto L280; } } /* Do test 17 */ temp2 = (n * 2. - 1.) * 2. * ulp * 3. / .0625; temp1 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__2 = d4[j] - wr[n - j + 1], abs( d__2)) / (abstol + (d__1 = d4[j], abs(d__1))); temp1 = max(d__3,d__4); /* L190: */ } result[17] = temp1 / temp2; } else { result[17] = 0.; } /* Now ask for all eigenvalues with high absolute accuracy. */ ntest = 18; abstol = unfl + unfl; dstebz_("A", "E", &n, &vl, &vu, &il, &iu, &abstol, &sd[1], &se[1], &m, &nsplit, &wa1[1], &iwork[1], &iwork[n + 1], &rwork[1] , &iwork[(n << 1) + 1], &iinfo); if (iinfo != 0) { io___68.ciunit = *nounit; s_wsfe(&io___68); do_fio(&c__1, "DSTEBZ(A)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[18] = ulpinv; goto L280; } } /* Do test 18 */ temp1 = 0.; temp2 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d3[j], abs(d__1)), d__3 = max( d__3,d__4), d__4 = (d__2 = wa1[j], abs(d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d3[j] - wa1[j], abs(d__1)); temp2 = max(d__2,d__3); /* L200: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[18] = temp2 / max(d__1,d__2); /* Choose random values for IL and IU, and ask for the IL-th through IU-th eigenvalues. */ ntest = 19; if (n <= 1) { il = 1; iu = n; } else { il = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; iu = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; if (iu < il) { itemp = iu; iu = il; il = itemp; } } dstebz_("I", "E", &n, &vl, &vu, &il, &iu, &abstol, &sd[1], &se[1], &m2, &nsplit, &wa2[1], &iwork[1], &iwork[n + 1], &rwork[ 1], &iwork[(n << 1) + 1], &iinfo); if (iinfo != 0) { io___71.ciunit = *nounit; s_wsfe(&io___71); do_fio(&c__1, "DSTEBZ(I)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[19] = ulpinv; goto L280; } } /* Determine the values VL and VU of the IL-th and IU-th eigenvalues and ask for all eigenvalues in this range. */ if (n > 0) { if (il != 1) { /* Computing MAX */ d__1 = (wa1[il] - wa1[il - 1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vl = wa1[il] - max(d__1,d__2); } else { /* Computing MAX */ d__1 = (wa1[n] - wa1[1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vl = wa1[1] - max(d__1,d__2); } if (iu != n) { /* Computing MAX */ d__1 = (wa1[iu + 1] - wa1[iu]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vu = wa1[iu] + max(d__1,d__2); } else { /* Computing MAX */ d__1 = (wa1[n] - wa1[1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vu = wa1[n] + max(d__1,d__2); } } else { vl = 0.; vu = 1.; } dstebz_("V", "E", &n, &vl, &vu, &il, &iu, &abstol, &sd[1], &se[1], &m3, &nsplit, &wa3[1], &iwork[1], &iwork[n + 1], &rwork[ 1], &iwork[(n << 1) + 1], &iinfo); if (iinfo != 0) { io___73.ciunit = *nounit; s_wsfe(&io___73); do_fio(&c__1, "DSTEBZ(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[19] = ulpinv; goto L280; } } if (m3 == 0 && n != 0) { result[19] = ulpinv; goto L280; } /* Do test 19 */ temp1 = dsxt1_(&c__1, &wa2[1], &m2, &wa3[1], &m3, &abstol, &ulp, & unfl); temp2 = dsxt1_(&c__1, &wa3[1], &m3, &wa2[1], &m2, &abstol, &ulp, & unfl); if (n > 0) { /* Computing MAX */ d__2 = (d__1 = wa1[n], abs(d__1)), d__3 = abs(wa1[1]); temp3 = max(d__2,d__3); } else { temp3 = 0.; } /* Computing MAX */ d__1 = unfl, d__2 = temp3 * ulp; result[19] = (temp1 + temp2) / max(d__1,d__2); /* Call ZSTEIN to compute eigenvectors corresponding to eigenvalues in WA1. (First call DSTEBZ again, to make sure it returns these eigenvalues in the correct order.) */ ntest = 21; dstebz_("A", "B", &n, &vl, &vu, &il, &iu, &abstol, &sd[1], &se[1], &m, &nsplit, &wa1[1], &iwork[1], &iwork[n + 1], &rwork[1] , &iwork[(n << 1) + 1], &iinfo); if (iinfo != 0) { io___74.ciunit = *nounit; s_wsfe(&io___74); do_fio(&c__1, "DSTEBZ(A,B)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[20] = ulpinv; result[21] = ulpinv; goto L280; } } zstein_(&n, &sd[1], &se[1], &m, &wa1[1], &iwork[1], &iwork[n + 1], &z__[z_offset], ldu, &rwork[1], &iwork[(n << 1) + 1], & iwork[n * 3 + 1], &iinfo); if (iinfo != 0) { io___75.ciunit = *nounit; s_wsfe(&io___75); do_fio(&c__1, "ZSTEIN", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[20] = ulpinv; result[21] = ulpinv; goto L280; } } /* Do tests 20 and 21 */ zstt21_(&n, &c__0, &sd[1], &se[1], &wa1[1], dumma, &z__[z_offset], ldu, &work[1], &rwork[1], &result[20]); /* Call ZSTEDC(I) to compute D1 and Z, do tests. Compute D1 and Z */ inde = 1; indrwk = inde + n; dcopy_(&n, &sd[1], &c__1, &d1[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[inde], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 22; zstedc_("I", &n, &d1[1], &rwork[inde], &z__[z_offset], ldu, &work[ 1], &lwedc, &rwork[indrwk], &lrwedc, &iwork[1], &liwedc, & iinfo); if (iinfo != 0) { io___78.ciunit = *nounit; s_wsfe(&io___78); do_fio(&c__1, "ZSTEDC(I)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[22] = ulpinv; goto L280; } } /* Do Tests 22 and 23 */ zstt21_(&n, &c__0, &sd[1], &se[1], &d1[1], dumma, &z__[z_offset], ldu, &work[1], &rwork[1], &result[22]); /* Call ZSTEDC(V) to compute D1 and Z, do tests. Compute D1 and Z */ dcopy_(&n, &sd[1], &c__1, &d1[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[inde], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 24; zstedc_("V", &n, &d1[1], &rwork[inde], &z__[z_offset], ldu, &work[ 1], &lwedc, &rwork[indrwk], &lrwedc, &iwork[1], &liwedc, & iinfo); if (iinfo != 0) { io___79.ciunit = *nounit; s_wsfe(&io___79); do_fio(&c__1, "ZSTEDC(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[24] = ulpinv; goto L280; } } /* Do Tests 24 and 25 */ zstt21_(&n, &c__0, &sd[1], &se[1], &d1[1], dumma, &z__[z_offset], ldu, &work[1], &rwork[1], &result[24]); /* Call ZSTEDC(N) to compute D2, do tests. Compute D2 */ dcopy_(&n, &sd[1], &c__1, &d2[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[inde], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 26; zstedc_("N", &n, &d2[1], &rwork[inde], &z__[z_offset], ldu, &work[ 1], &lwedc, &rwork[indrwk], &lrwedc, &iwork[1], &liwedc, & iinfo); if (iinfo != 0) { io___80.ciunit = *nounit; s_wsfe(&io___80); do_fio(&c__1, "ZSTEDC(N)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[26] = ulpinv; goto L280; } } /* Do Test 26 */ temp1 = 0.; temp2 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max( d__3,d__4), d__4 = (d__2 = d2[j], abs(d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d1[j] - d2[j], abs(d__1)); temp2 = max(d__2,d__3); /* L210: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[26] = temp2 / max(d__1,d__2); /* Only test ZSTEMR if IEEE compliant */ if (ilaenv_(&c__10, "ZSTEGR", "VA", &c__1, &c__0, &c__0, &c__0, ( ftnlen)6, (ftnlen)2) == 1 && ilaenv_(&c__11, "ZSTEGR", "VA", &c__1, &c__0, &c__0, &c__0, (ftnlen)6, (ftnlen)2) == 1) { /* Call ZSTEMR, do test 27 (relative eigenvalue accuracy) If S is positive definite and diagonally dominant, ask for all eigenvalues with high relative accuracy. */ vl = 0.; vu = 0.; il = 0; iu = 0; if (FALSE_) { ntest = 27; abstol = unfl + unfl; i__3 = *lwork - (n << 1); zstemr_("V", "A", &n, &sd[1], &se[1], &vl, &vu, &il, &iu, &m, &wr[1], &z__[z_offset], ldu, &n, &iwork[1], & tryrac, &rwork[1], lrwork, &iwork[(n << 1) + 1], & i__3, &iinfo); if (iinfo != 0) { io___81.ciunit = *nounit; s_wsfe(&io___81); do_fio(&c__1, "ZSTEMR(V,A,rel)", (ftnlen)15); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[27] = ulpinv; goto L270; } } /* Do test 27 */ temp2 = (n * 2. - 1.) * 2. * ulp * 3. / .0625; temp1 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__2 = d4[j] - wr[n - j + 1], abs(d__2)) / (abstol + (d__1 = d4[j], abs( d__1))); temp1 = max(d__3,d__4); /* L220: */ } result[27] = temp1 / temp2; il = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; iu = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; if (iu < il) { itemp = iu; iu = il; il = itemp; } if (FALSE_) { ntest = 28; abstol = unfl + unfl; i__3 = *lwork - (n << 1); zstemr_("V", "I", &n, &sd[1], &se[1], &vl, &vu, &il, & iu, &m, &wr[1], &z__[z_offset], ldu, &n, & iwork[1], &tryrac, &rwork[1], lrwork, &iwork[( n << 1) + 1], &i__3, &iinfo); if (iinfo != 0) { io___82.ciunit = *nounit; s_wsfe(&io___82); do_fio(&c__1, "ZSTEMR(V,I,rel)", (ftnlen)15); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[28] = ulpinv; goto L270; } } /* Do test 28 */ temp2 = (n * 2. - 1.) * 2. * ulp * 3. / .0625; temp1 = 0.; i__3 = iu; for (j = il; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__2 = wr[j - il + 1] - d4[ n - j + 1], abs(d__2)) / (abstol + (d__1 = wr[j - il + 1], abs(d__1))); temp1 = max(d__3,d__4); /* L230: */ } result[28] = temp1 / temp2; } else { result[28] = 0.; } } else { result[27] = 0.; result[28] = 0.; } /* Call ZSTEMR(V,I) to compute D1 and Z, do tests. Compute D1 and Z */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); if (FALSE_) { ntest = 29; il = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; iu = (n - 1) * (integer) dlarnd_(&c__1, iseed2) + 1; if (iu < il) { itemp = iu; iu = il; il = itemp; } i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("V", "I", &n, &d5[1], &rwork[1], &vl, &vu, &il, & iu, &m, &d1[1], &z__[z_offset], ldu, &n, &iwork[1] , &tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], &i__4, &iinfo); if (iinfo != 0) { io___83.ciunit = *nounit; s_wsfe(&io___83); do_fio(&c__1, "ZSTEMR(V,I)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[29] = ulpinv; goto L280; } } /* Do Tests 29 and 30 Call ZSTEMR to compute D2, do tests. Compute D2 */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 31; i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("N", "I", &n, &d5[1], &rwork[1], &vl, &vu, &il, & iu, &m, &d2[1], &z__[z_offset], ldu, &n, &iwork[1] , &tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], &i__4, &iinfo); if (iinfo != 0) { io___84.ciunit = *nounit; s_wsfe(&io___84); do_fio(&c__1, "ZSTEMR(N,I)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[31] = ulpinv; goto L280; } } /* Do Test 31 */ temp1 = 0.; temp2 = 0.; i__3 = iu - il + 1; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max(d__3,d__4), d__4 = (d__2 = d2[j], abs( d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d1[j] - d2[j], abs(d__1)) ; temp2 = max(d__2,d__3); /* L240: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[31] = temp2 / max(d__1,d__2); /* Call ZSTEMR(V,V) to compute D1 and Z, do tests. Compute D1 and Z */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } zlaset_("Full", &n, &n, &c_b1, &c_b2, &z__[z_offset], ldu); ntest = 32; if (n > 0) { if (il != 1) { /* Computing MAX */ d__1 = (d2[il] - d2[il - 1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vl = d2[il] - max(d__1,d__2); } else { /* Computing MAX */ d__1 = (d2[n] - d2[1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vl = d2[1] - max(d__1,d__2); } if (iu != n) { /* Computing MAX */ d__1 = (d2[iu + 1] - d2[iu]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vu = d2[iu] + max(d__1,d__2); } else { /* Computing MAX */ d__1 = (d2[n] - d2[1]) * .5, d__2 = ulp * anorm, d__1 = max(d__1,d__2), d__2 = rtunfl * 2.; vu = d2[n] + max(d__1,d__2); } } else { vl = 0.; vu = 1.; } i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("V", "V", &n, &d5[1], &rwork[1], &vl, &vu, &il, & iu, &m, &d1[1], &z__[z_offset], ldu, &m, &iwork[1] , &tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], &i__4, &iinfo); if (iinfo != 0) { io___85.ciunit = *nounit; s_wsfe(&io___85); do_fio(&c__1, "ZSTEMR(V,V)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[32] = ulpinv; goto L280; } } /* Do Tests 32 and 33 */ zstt22_(&n, &m, &c__0, &sd[1], &se[1], &d1[1], dumma, & z__[z_offset], ldu, &work[1], &m, &rwork[1], & result[32]); /* Call ZSTEMR to compute D2, do tests. Compute D2 */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 34; i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("N", "V", &n, &d5[1], &rwork[1], &vl, &vu, &il, & iu, &m, &d2[1], &z__[z_offset], ldu, &n, &iwork[1] , &tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], &i__4, &iinfo); if (iinfo != 0) { io___86.ciunit = *nounit; s_wsfe(&io___86); do_fio(&c__1, "ZSTEMR(N,V)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[34] = ulpinv; goto L280; } } /* Do Test 34 */ temp1 = 0.; temp2 = 0.; i__3 = iu - il + 1; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max(d__3,d__4), d__4 = (d__2 = d2[j], abs( d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d1[j] - d2[j], abs(d__1)) ; temp2 = max(d__2,d__3); /* L250: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[34] = temp2 / max(d__1,d__2); } else { result[29] = 0.; result[30] = 0.; result[31] = 0.; result[32] = 0.; result[33] = 0.; result[34] = 0.; } /* Call ZSTEMR(V,A) to compute D1 and Z, do tests. Compute D1 and Z */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 35; i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("V", "A", &n, &d5[1], &rwork[1], &vl, &vu, &il, &iu, & m, &d1[1], &z__[z_offset], ldu, &n, &iwork[1], & tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], & i__4, &iinfo); if (iinfo != 0) { io___87.ciunit = *nounit; s_wsfe(&io___87); do_fio(&c__1, "ZSTEMR(V,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[35] = ulpinv; goto L280; } } /* Do Tests 35 and 36 */ zstt22_(&n, &m, &c__0, &sd[1], &se[1], &d1[1], dumma, &z__[ z_offset], ldu, &work[1], &m, &rwork[1], &result[35]); /* Call ZSTEMR to compute D2, do tests. Compute D2 */ dcopy_(&n, &sd[1], &c__1, &d5[1], &c__1); if (n > 0) { i__3 = n - 1; dcopy_(&i__3, &se[1], &c__1, &rwork[1], &c__1); } ntest = 37; i__3 = *lrwork - n; i__4 = *liwork - (n << 1); zstemr_("N", "A", &n, &d5[1], &rwork[1], &vl, &vu, &il, &iu, & m, &d2[1], &z__[z_offset], ldu, &n, &iwork[1], & tryrac, &rwork[n + 1], &i__3, &iwork[(n << 1) + 1], & i__4, &iinfo); if (iinfo != 0) { io___88.ciunit = *nounit; s_wsfe(&io___88); do_fio(&c__1, "ZSTEMR(N,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[37] = ulpinv; goto L280; } } /* Do Test 34 */ temp1 = 0.; temp2 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = d1[j], abs(d__1)), d__3 = max(d__3,d__4), d__4 = (d__2 = d2[j], abs(d__2)); temp1 = max(d__3,d__4); /* Computing MAX */ d__2 = temp2, d__3 = (d__1 = d1[j] - d2[j], abs(d__1)); temp2 = max(d__2,d__3); /* L260: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[37] = temp2 / max(d__1,d__2); } L270: L280: ntestt += ntest; /* End of Loop -- Check for RESULT(j) > THRESH Print out tests which fail. */ i__3 = ntest; for (jr = 1; jr <= i__3; ++jr) { if (result[jr] >= *thresh) { /* If this is the first test to fail, print a header to the data file. */ if (nerrs == 0) { io___89.ciunit = *nounit; s_wsfe(&io___89); do_fio(&c__1, "ZST", (ftnlen)3); e_wsfe(); io___90.ciunit = *nounit; s_wsfe(&io___90); e_wsfe(); io___91.ciunit = *nounit; s_wsfe(&io___91); e_wsfe(); io___92.ciunit = *nounit; s_wsfe(&io___92); do_fio(&c__1, "Hermitian", (ftnlen)9); e_wsfe(); io___93.ciunit = *nounit; s_wsfe(&io___93); e_wsfe(); /* Tests performed */ io___94.ciunit = *nounit; s_wsfe(&io___94); e_wsfe(); } ++nerrs; if (result[jr] < 1e4) { io___95.ciunit = *nounit; s_wsfe(&io___95); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof( doublereal)); e_wsfe(); } else { io___96.ciunit = *nounit; s_wsfe(&io___96); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof( doublereal)); e_wsfe(); } } /* L290: */ } L300: ; } /* L310: */ } /* Summary */ dlasum_("ZST", nounit, &nerrs, &ntestt); return 0; /* L9993: L9992: L9991: L9990: End of ZCHKST */ } /* zchkst_ */