#include "blaswrap.h"
/* dchksb.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"

/* Table of constant values */

static doublereal c_b18 = 0.;
static integer c__0 = 0;
static integer c__6 = 6;
static doublereal c_b32 = 1.;
static integer c__1 = 1;
static integer c__4 = 4;

/* Subroutine */ int dchksb_(integer *nsizes, integer *nn, integer *nwdths, 
	integer *kk, integer *ntypes, logical *dotype, integer *iseed, 
	doublereal *thresh, integer *nounit, doublereal *a, integer *lda, 
	doublereal *sd, doublereal *se, doublereal *u, integer *ldu, 
	doublereal *work, integer *lwork, doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[15] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8 };
    static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 };
    static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DCHKSB: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(/1x,a3,\002 -- Real Symmetric Banded Tridiago"
	    "nal Reduction Routines\002)";
    static char fmt_9997[] = "(\002 Matrix types (see DCHKSB for details):"
	    " \002)";
    static char fmt_9996[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.                        \002,\002  5=Diagonal: clustered ent"
	    "ries.\002,/\002  2=Identity matrix.                    \002,\002"
	    "  6=Diagonal: large, evenly spaced.\002,/\002  3=Diagonal: evenl"
	    "y spaced entries.    \002,\002  7=Diagonal: small, evenly spaced."
	    "\002,/\002  4=Diagonal: geometr. spaced entries.\002)";
    static char fmt_9995[] = "(\002 Dense \002,a,\002 Banded Matrices:\002,"
	    "/\002  8=Evenly spaced eigenvals.            \002,\002 12=Small,"
	    " evenly spaced eigenvals.\002,/\002  9=Geometrically spaced eige"
	    "nvals.     \002,\002 13=Matrix with random O(1) entries.\002,"
	    "/\002 10=Clustered eigenvalues.              \002,\002 14=Matrix"
	    " with large random entries.\002,/\002 11=Large, evenly spaced ei"
	    "genvals.     \002,\002 15=Matrix with small random entries.\002)";
    static char fmt_9994[] = "(/\002 Tests performed:   (S is Tridiag,  U "
	    "is \002,a,\002,\002,/20x,a,\002 means \002,a,\002.\002,/\002 UPL"
	    "O='U':\002,/\002  1= | A - U S U\002,a1,\002 | / ( |A| n ulp )  "
	    "   \002,\002  2= | I - U U\002,a1,\002 | / ( n ulp )\002,/\002 U"
	    "PLO='L':\002,/\002  3= | A - U S U\002,a1,\002 | / ( |A| n ulp )"
	    "     \002,\002  4= | I - U U\002,a1,\002 | / ( n ulp )\002)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, K=\002,i4,\002, seed="
	    "\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)"
	    "=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4, i__5, 
	    i__6, i__7;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer i__, j, k, n, jc, jr;
    static doublereal ulp, cond;
    static integer jcol, kmax, nmax;
    static doublereal unfl, ovfl, temp1;
    static logical badnn;
    static integer imode;
    extern /* Subroutine */ int dsbt21_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    static integer iinfo;
    static doublereal aninv, anorm;
    static integer nmats, jsize, nerrs, itype, jtype, ntest;
    static logical badnnb;
    extern doublereal dlamch_(char *);
    static integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dsbtrd_(char *, char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), dlatmr_(integer *, integer *, char *, integer *, 
	    char *, doublereal *, integer *, doublereal *, doublereal *, char 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, char *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, char *, doublereal *, integer *, 
	    integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublereal *, integer *, doublereal *, integer 
	    *), dlasum_(char *, integer *, integer *, 
	    integer *);
    static integer jwidth;
    static doublereal rtunfl, rtovfl, ulpinv;
    static integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___36 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___37 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9993, 0 };



/*  -- LAPACK test routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    DCHKSB tests the reduction of a symmetric band matrix to tridiagonal   
    form, used with the symmetric eigenvalue problem.   

    DSBTRD factors a symmetric band matrix A as  U S U' , where ' means   
    transpose, S is symmetric tridiagonal, and U is orthogonal.   
    DSBTRD can use either just the lower or just the upper triangle   
    of A; DCHKSB checks both cases.   

    When DCHKSB is called, a number of matrix "sizes" ("n's"), a number   
    of bandwidths ("k's"), and a number of matrix "types" are   
    specified.  For each size ("n"), each bandwidth ("k") less than or   
    equal to "n", and each type of matrix, one matrix will be generated   
    and used to test the symmetric banded reduction routine.  For each   
    matrix, a number of tests will be performed:   

    (1)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with   
                                            UPLO='U'   

    (2)     | I - UU' | / ( n ulp )   

    (3)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with   
                                            UPLO='L'   

    (4)     | I - UU' | / ( n ulp )   

    The "sizes" are specified by an array NN(1:NSIZES); the value of   
    each element NN(j) specifies one size.   
    The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
    Currently, the list of possible types is:   

    (1)  The zero matrix.   
    (2)  The identity matrix.   

    (3)  A diagonal matrix with evenly spaced entries   
         1, ..., ULP  and random signs.   
         (ULP = (first number larger than 1) - 1 )   
    (4)  A diagonal matrix with geometrically spaced entries   
         1, ..., ULP  and random signs.   
    (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
         and random signs.   

    (6)  Same as (4), but multiplied by SQRT( overflow threshold )   
    (7)  Same as (4), but multiplied by SQRT( underflow threshold )   

    (8)  A matrix of the form  U' D U, where U is orthogonal and   
         D has evenly spaced entries 1, ..., ULP with random signs   
         on the diagonal.   

    (9)  A matrix of the form  U' D U, where U is orthogonal and   
         D has geometrically spaced entries 1, ..., ULP with random   
         signs on the diagonal.   

    (10) A matrix of the form  U' D U, where U is orthogonal and   
         D has "clustered" entries 1, ULP,..., ULP with random   
         signs on the diagonal.   

    (11) Same as (8), but multiplied by SQRT( overflow threshold )   
    (12) Same as (8), but multiplied by SQRT( underflow threshold )   

    (13) Symmetric matrix with random entries chosen from (-1,1).   
    (14) Same as (13), but multiplied by SQRT( overflow threshold )   
    (15) Same as (13), but multiplied by SQRT( underflow threshold )   

    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  If it is zero,   
            DCHKSB does nothing.  It must be at least zero.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NWDTHS  (input) INTEGER   
            The number of bandwidths to use.  If it is zero,   
            DCHKSB does nothing.  It must be at least zero.   

    KK      (input) INTEGER array, dimension (NWDTHS)   
            An array containing the bandwidths to be used for the band   
            matrices.  The values must be at least zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE.   If it is zero, DCHKSB   
            does nothing.  It must be at least zero.  If it is MAXTYP+1   
            and NSIZES is 1, then an additional type, MAXTYP+1 is   
            defined, which is to use whatever matrix is in A.  This   
            is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
            DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to DCHKSB to continue the same random number   
            sequence.   

    THRESH  (input) DOUBLE PRECISION   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns IINFO not equal to 0.)   

    A       (input/workspace) DOUBLE PRECISION array, dimension   
                              (LDA, max(NN))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.   

    LDA     (input) INTEGER   
            The leading dimension of A.  It must be at least 2 (not 1!)   
            and at least max( KK )+1.   

    SD      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            Used to hold the diagonal of the tridiagonal matrix computed   
            by DSBTRD.   

    SE      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            Used to hold the off-diagonal of the tridiagonal matrix   
            computed by DSBTRD.   

    U       (workspace) DOUBLE PRECISION array, dimension (LDU, max(NN))   
            Used to hold the orthogonal matrix computed by DSBTRD.   

    LDU     (input) INTEGER   
            The leading dimension of U.  It must be at least 1   
            and at least max( NN ).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            max( LDA+1, max(NN)+1 )*max(NN).   

    RESULT  (output) DOUBLE PRECISION array, dimension (4)   
            The values computed by the tests described above.   
            The values are currently limited to 1/ulp, to avoid   
            overflow.   

    INFO    (output) INTEGER   
            If 0, then everything ran OK.   

   -----------------------------------------------------------------------   

         Some Local Variables and Parameters:   
         ---- ----- --------- --- ----------   
         ZERO, ONE       Real 0 and 1.   
         MAXTYP          The number of types defined.   
         NTEST           The number of tests performed, or which can   
                         be performed so far, for the current matrix.   
         NTESTT          The total number of tests performed so far.   
         NMAX            Largest value in NN.   
         NMATS           The number of matrices generated so far.   
         NERRS           The number of tests which have exceeded THRESH   
                         so far.   
         COND, IMODE     Values to be passed to the matrix generators.   
         ANORM           Norm of A; passed to matrix generators.   

         OVFL, UNFL      Overflow and underflow thresholds.   
         ULP, ULPINV     Finest relative precision and its inverse.   
         RTOVFL, RTUNFL  Square roots of the previous 2 values.   
                 The following four arrays decode JTYPE:   
         KTYPE(j)        The general type (1-10) for type "j".   
         KMODE(j)        The MODE value to be passed to the matrix   
                         generator for type "j".   
         KMAGN(j)        The order of magnitude ( O(1),   
                         O(overflow^(1/2) ), O(underflow^(1/2) )   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --kk;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --sd;
    --se;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --work;
    --result;

    /* Function Body   

       Check for errors */

    ntestt = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;
    nmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

    badnnb = FALSE_;
    kmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = kmax, i__3 = kk[j];
	kmax = max(i__2,i__3);
	if (kk[j] < 0) {
	    badnnb = TRUE_;
	}
/* L20: */
    }
/* Computing MIN */
    i__1 = nmax - 1;
    kmax = min(i__1,kmax);

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*nwdths < 0) {
	*info = -3;
    } else if (badnnb) {
	*info = -4;
    } else if (*ntypes < 0) {
	*info = -5;
    } else if (*lda < kmax + 1) {
	*info = -11;
    } else if (*ldu < nmax) {
	*info = -15;
    } else if ((max(*lda,nmax) + 1) * nmax > *lwork) {
	*info = -17;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKSB", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	aninv = 1. / (doublereal) max(1,n);

	i__2 = *nwdths;
	for (jwidth = 1; jwidth <= i__2; ++jwidth) {
	    k = kk[jwidth];
	    if (k > n) {
		goto L180;
	    }
/* Computing MAX   
   Computing MIN */
	    i__5 = n - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    k = max(i__3,i__4);

	    if (*nsizes != 1) {
		mtypes = min(15,*ntypes);
	    } else {
		mtypes = min(16,*ntypes);
	    }

	    i__3 = mtypes;
	    for (jtype = 1; jtype <= i__3; ++jtype) {
		if (! dotype[jtype]) {
		    goto L170;
		}
		++nmats;
		ntest = 0;

		for (j = 1; j <= 4; ++j) {
		    ioldsd[j - 1] = iseed[j];
/* L30: */
		}

/*              Compute "A".   
                Store as "Upper"; later, we will copy to other format.   

                Control parameters:   

                    KMAGN  KMODE        KTYPE   
                =1  O(1)   clustered 1  zero   
                =2  large  clustered 2  identity   
                =3  small  exponential  (none)   
                =4         arithmetic   diagonal, (w/ eigenvalues)   
                =5         random log   symmetric, w/ eigenvalues   
                =6         random       (none)   
                =7                      random diagonal   
                =8                      random symmetric   
                =9                      positive definite   
                =10                     diagonally dominant tridiagonal */

		if (mtypes > 15) {
		    goto L100;
		}

		itype = ktype[jtype - 1];
		imode = kmode[jtype - 1];

/*              Compute norm */

		switch (kmagn[jtype - 1]) {
		    case 1:  goto L40;
		    case 2:  goto L50;
		    case 3:  goto L60;
		}

L40:
		anorm = 1.;
		goto L70;

L50:
		anorm = rtovfl * ulp * aninv;
		goto L70;

L60:
		anorm = rtunfl * n * ulpinv;
		goto L70;

L70:

		dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		iinfo = 0;
		if (jtype <= 15) {
		    cond = ulpinv;
		} else {
		    cond = ulpinv * aninv / 10.;
		}

/*              Special Matrices -- Identity & Jordan block   

                   Zero */

		if (itype == 1) {
		    iinfo = 0;

		} else if (itype == 2) {

/*                 Identity */

		    i__4 = n;
		    for (jcol = 1; jcol <= i__4; ++jcol) {
			a[k + 1 + jcol * a_dim1] = anorm;
/* L80: */
		    }

		} else if (itype == 4) {

/*                 Diagonal Matrix, [Eigen]values Specified */

		    dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &
			    cond, &anorm, &c__0, &c__0, "Q", &a[k + 1 + 
			    a_dim1], lda, &work[n + 1], &iinfo);

		} else if (itype == 5) {

/*                 Symmetric, eigenvalues specified */

		    dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &
			    cond, &anorm, &k, &k, "Q", &a[a_offset], lda, &
			    work[n + 1], &iinfo);

		} else if (itype == 7) {

/*                 Diagonal, random eigenvalues */

		    dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &
			    c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &
			    c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", 
			    idumma, &c__0, &c__0, &c_b18, &anorm, "Q", &a[k + 
			    1 + a_dim1], lda, idumma, &iinfo);

		} else if (itype == 8) {

/*                 Symmetric, random eigenvalues */

		    dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &
			    c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &
			    c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", 
			    idumma, &k, &k, &c_b18, &anorm, "Q", &a[a_offset],
			     lda, idumma, &iinfo);

		} else if (itype == 9) {

/*                 Positive definite, eigenvalues specified. */

		    dlatms_(&n, &n, "S", &iseed[1], "P", &work[1], &imode, &
			    cond, &anorm, &k, &k, "Q", &a[a_offset], lda, &
			    work[n + 1], &iinfo);

		} else if (itype == 10) {

/*                 Positive definite tridiagonal, eigenvalues specified. */

		    if (n > 1) {
			k = max(1,k);
		    }
		    dlatms_(&n, &n, "S", &iseed[1], "P", &work[1], &imode, &
			    cond, &anorm, &c__1, &c__1, "Q", &a[k + a_dim1], 
			    lda, &work[n + 1], &iinfo);
		    i__4 = n;
		    for (i__ = 2; i__ <= i__4; ++i__) {
			temp1 = (d__1 = a[k + i__ * a_dim1], abs(d__1)) / 
				sqrt((d__2 = a[k + 1 + (i__ - 1) * a_dim1] * 
				a[k + 1 + i__ * a_dim1], abs(d__2)));
			if (temp1 > .5) {
			    a[k + i__ * a_dim1] = sqrt((d__1 = a[k + 1 + (i__ 
				    - 1) * a_dim1] * a[k + 1 + i__ * a_dim1], 
				    abs(d__1))) * .5;
			}
/* L90: */
		    }

		} else {

		    iinfo = 1;
		}

		if (iinfo != 0) {
		    io___36.ciunit = *nounit;
		    s_wsfe(&io___36);
		    do_fio(&c__1, "Generator", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

L100:

/*              Call DSBTRD to compute S and U from upper triangle. */

		i__4 = k + 1;
		dlacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda);

		ntest = 1;
		dsbtrd_("V", "U", &n, &k, &work[1], lda, &sd[1], &se[1], &u[
			u_offset], ldu, &work[*lda * n + 1], &iinfo);

		if (iinfo != 0) {
		    io___37.ciunit = *nounit;
		    s_wsfe(&io___37);
		    do_fio(&c__1, "DSBTRD(U)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[1] = ulpinv;
			goto L150;
		    }
		}

/*              Do tests 1 and 2 */

		dsbt21_("Upper", &n, &k, &c__1, &a[a_offset], lda, &sd[1], &
			se[1], &u[u_offset], ldu, &work[1], &result[1]);

/*              Convert A from Upper-Triangle-Only storage to   
                Lower-Triangle-Only storage. */

		i__4 = n;
		for (jc = 1; jc <= i__4; ++jc) {
/* Computing MIN */
		    i__6 = k, i__7 = n - jc;
		    i__5 = min(i__6,i__7);
		    for (jr = 0; jr <= i__5; ++jr) {
			a[jr + 1 + jc * a_dim1] = a[k + 1 - jr + (jc + jr) * 
				a_dim1];
/* L110: */
		    }
/* L120: */
		}
		i__4 = n;
		for (jc = n + 1 - k; jc <= i__4; ++jc) {
/* Computing MIN */
		    i__5 = k, i__6 = n - jc;
		    i__7 = k;
		    for (jr = min(i__5,i__6) + 1; jr <= i__7; ++jr) {
			a[jr + 1 + jc * a_dim1] = 0.;
/* L130: */
		    }
/* L140: */
		}

/*              Call DSBTRD to compute S and U from lower triangle */

		i__4 = k + 1;
		dlacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda);

		ntest = 3;
		dsbtrd_("V", "L", &n, &k, &work[1], lda, &sd[1], &se[1], &u[
			u_offset], ldu, &work[*lda * n + 1], &iinfo);

		if (iinfo != 0) {
		    io___40.ciunit = *nounit;
		    s_wsfe(&io___40);
		    do_fio(&c__1, "DSBTRD(L)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[3] = ulpinv;
			goto L150;
		    }
		}
		ntest = 4;

/*              Do tests 3 and 4 */

		dsbt21_("Lower", &n, &k, &c__1, &a[a_offset], lda, &sd[1], &
			se[1], &u[u_offset], ldu, &work[1], &result[3]);

/*              End of Loop -- Check for RESULT(j) > THRESH */

L150:
		ntestt += ntest;

/*              Print out tests which fail. */

		i__4 = ntest;
		for (jr = 1; jr <= i__4; ++jr) {
		    if (result[jr] >= *thresh) {

/*                    If this is the first test to fail,   
                      print a header to the data file. */

			if (nerrs == 0) {
			    io___41.ciunit = *nounit;
			    s_wsfe(&io___41);
			    do_fio(&c__1, "DSB", (ftnlen)3);
			    e_wsfe();
			    io___42.ciunit = *nounit;
			    s_wsfe(&io___42);
			    e_wsfe();
			    io___43.ciunit = *nounit;
			    s_wsfe(&io___43);
			    e_wsfe();
			    io___44.ciunit = *nounit;
			    s_wsfe(&io___44);
			    do_fio(&c__1, "Symmetric", (ftnlen)9);
			    e_wsfe();
			    io___45.ciunit = *nounit;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "orthogonal", (ftnlen)10);
			    do_fio(&c__1, "'", (ftnlen)1);
			    do_fio(&c__1, "transpose", (ftnlen)9);
			    for (j = 1; j <= 4; ++j) {
				do_fio(&c__1, "'", (ftnlen)1);
			    }
			    e_wsfe();
			}
			++nerrs;
			io___46.ciunit = *nounit;
			s_wsfe(&io___46);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    }
/* L160: */
		}

L170:
		;
	    }
L180:
	    ;
	}
/* L190: */
    }

/*     Summary */

    dlasum_("DSB", nounit, &nerrs, &ntestt);
    return 0;





/*     End of DCHKSB */

} /* dchksb_ */