#include "blaswrap.h" /* dchkhs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b18 = 0.; static integer c__0 = 0; static doublereal c_b32 = 1.; static integer c__4 = 4; static integer c__6 = 6; static integer c__1 = 1; /* Subroutine */ int dchkhs_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, doublereal *a, integer *lda, doublereal *h__, doublereal *t1, doublereal *t2, doublereal *u, integer *ldu, doublereal *z__, doublereal *uz, doublereal *wr1, doublereal *wi1, doublereal *wr3, doublereal *wi3, doublereal *evectl, doublereal *evectr, doublereal * evecty, doublereal *evectx, doublereal *uu, doublereal *tau, doublereal *work, integer *nwork, integer *iwork, logical *select, doublereal *result, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9999[] = "(\002 DCHKHS: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9998[] = "(\002 DCHKHS: \002,a,\002 Eigenvectors from" " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of " "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002," "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9997[] = "(\002 DCHKHS: Selected \002,a,\002 Eigenvector" "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N=" "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5," "\002)\002)"; /* System generated locals */ integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2, d__3, d__4, d__5, d__6; /* Builtin functions */ double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, j, k, n, n1, jj, in, ihi, ilo; static doublereal ulp, cond; static integer jcol, nmax; static doublereal unfl, ovfl, temp1, temp2; static logical badnn; extern /* Subroutine */ int dget10_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dget22_(char *, char *, char *, integer *, doublereal *, integer * , doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *), dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static logical match; static integer imode; static doublereal dumma[6]; static integer iinfo, nselc; static doublereal conds; extern /* Subroutine */ int dhst01_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *); static doublereal aninv, anorm; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer nmats, nselr, jsize, nerrs, itype, jtype, ntest; static doublereal rtulp; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); static char adumma[1*1]; extern /* Subroutine */ int dlatme_(integer *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, char *, char *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dhsein_(char *, char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *); static integer idumma[1]; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *), dlasum_(char *, integer *, integer *, integer *), dhseqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), dorghr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dtrevc_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *), dormhr_(char *, char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); static doublereal rtunfl, rtovfl, rtulpi, ulpinv; static integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___36 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___60 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___63 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___64 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___66 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. February 2007 Purpose ======= DCHKHS checks the nonsymmetric eigenvalue problem routines. DGEHRD factors A as U H U' , where ' means transpose, H is hessenberg, and U is an orthogonal matrix. DORGHR generates the orthogonal matrix U. DORMHR multiplies a matrix by the orthogonal matrix U. DHSEQR factors H as Z T Z' , where Z is orthogonal and T is "quasi-triangular", and the eigenvalue vector W. DTREVC computes the left and right eigenvector matrices L and R for T. DHSEIN computes the left and right eigenvector matrices Y and X for H, using inverse iteration. When DCHKHS is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix will be generated and used to test the nonsymmetric eigenroutines. For each matrix, 14 tests will be performed: (1) | A - U H U**T | / ( |A| n ulp ) (2) | I - UU**T | / ( n ulp ) (3) | H - Z T Z**T | / ( |H| n ulp ) (4) | I - ZZ**T | / ( n ulp ) (5) | A - UZ H (UZ)**T | / ( |A| n ulp ) (6) | I - UZ (UZ)**T | / ( n ulp ) (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) (9) | TR - RW | / ( |T| |R| ulp ) (10) | L**H T - W**H L | / ( |T| |L| ulp ) (11) | HX - XW | / ( |H| |X| ulp ) (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) (13) | AX - XW | / ( |A| |X| ulp ) (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A (transposed) Jordan block, with 1's on the diagonal. (4) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (5) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (7) Same as (4), but multiplied by SQRT( overflow threshold ) (8) Same as (4), but multiplied by SQRT( underflow threshold ) (9) A matrix of the form U' T U, where U is orthogonal and T has evenly spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (10) A matrix of the form U' T U, where U is orthogonal and T has geometrically spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (11) A matrix of the form U' T U, where U is orthogonal and T has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (12) A matrix of the form U' T U, where U is orthogonal and T has real or complex conjugate paired eigenvalues randomly chosen from ( ULP, 1 ) and random O(1) entries in the upper triangle. (13) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (14) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has geometrically spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (15) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (16) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has real or complex conjugate paired eigenvalues randomly chosen from ( ULP, 1 ) and random O(1) entries in the upper triangle. (17) Same as (16), but multiplied by SQRT( overflow threshold ) (18) Same as (16), but multiplied by SQRT( underflow threshold ) (19) Nonsymmetric matrix with random entries chosen from (-1,1). (20) Same as (19), but multiplied by SQRT( overflow threshold ) (21) Same as (19), but multiplied by SQRT( underflow threshold ) Arguments ========== NSIZES - INTEGER The number of sizes of matrices to use. If it is zero, DCHKHS does nothing. It must be at least zero. Not modified. NN - INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. Not modified. NTYPES - INTEGER The number of elements in DOTYPE. If it is zero, DCHKHS does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . Not modified. DOTYPE - LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. Not modified. ISEED - INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to DCHKHS to continue the same random number sequence. Modified. THRESH - DOUBLE PRECISION A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. Not modified. NOUNIT - INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) Not modified. A - DOUBLE PRECISION array, dimension (LDA,max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. Modified. LDA - INTEGER The leading dimension of A, H, T1 and T2. It must be at least 1 and at least max( NN ). Not modified. H - DOUBLE PRECISION array, dimension (LDA,max(NN)) The upper hessenberg matrix computed by DGEHRD. On exit, H contains the Hessenberg form of the matrix in A. Modified. T1 - DOUBLE PRECISION array, dimension (LDA,max(NN)) The Schur (="quasi-triangular") matrix computed by DHSEQR if Z is computed. On exit, T1 contains the Schur form of the matrix in A. Modified. T2 - DOUBLE PRECISION array, dimension (LDA,max(NN)) The Schur matrix computed by DHSEQR when Z is not computed. This should be identical to T1. Modified. LDU - INTEGER The leading dimension of U, Z, UZ and UU. It must be at least 1 and at least max( NN ). Not modified. U - DOUBLE PRECISION array, dimension (LDU,max(NN)) The orthogonal matrix computed by DGEHRD. Modified. Z - DOUBLE PRECISION array, dimension (LDU,max(NN)) The orthogonal matrix computed by DHSEQR. Modified. UZ - DOUBLE PRECISION array, dimension (LDU,max(NN)) The product of U times Z. Modified. WR1 - DOUBLE PRECISION array, dimension (max(NN)) WI1 - DOUBLE PRECISION array, dimension (max(NN)) The real and imaginary parts of the eigenvalues of A, as computed when Z is computed. On exit, WR1 + WI1*i are the eigenvalues of the matrix in A. Modified. WR3 - DOUBLE PRECISION array, dimension (max(NN)) WI3 - DOUBLE PRECISION array, dimension (max(NN)) Like WR1, WI1, these arrays contain the eigenvalues of A, but those computed when DHSEQR only computes the eigenvalues, i.e., not the Schur vectors and no more of the Schur form than is necessary for computing the eigenvalues. Modified. EVECTL - DOUBLE PRECISION array, dimension (LDU,max(NN)) The (upper triangular) left eigenvector matrix for the matrix in T1. For complex conjugate pairs, the real part is stored in one row and the imaginary part in the next. Modified. EVEZTR - DOUBLE PRECISION array, dimension (LDU,max(NN)) The (upper triangular) right eigenvector matrix for the matrix in T1. For complex conjugate pairs, the real part is stored in one column and the imaginary part in the next. Modified. EVECTY - DOUBLE PRECISION array, dimension (LDU,max(NN)) The left eigenvector matrix for the matrix in H. For complex conjugate pairs, the real part is stored in one row and the imaginary part in the next. Modified. EVECTX - DOUBLE PRECISION array, dimension (LDU,max(NN)) The right eigenvector matrix for the matrix in H. For complex conjugate pairs, the real part is stored in one column and the imaginary part in the next. Modified. UU - DOUBLE PRECISION array, dimension (LDU,max(NN)) Details of the orthogonal matrix computed by DGEHRD. Modified. TAU - DOUBLE PRECISION array, dimension(max(NN)) Further details of the orthogonal matrix computed by DGEHRD. Modified. WORK - DOUBLE PRECISION array, dimension (NWORK) Workspace. Modified. NWORK - INTEGER The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. IWORK - INTEGER array, dimension (max(NN)) Workspace. Modified. SELECT - LOGICAL array, dimension (max(NN)) Workspace. Modified. RESULT - DOUBLE PRECISION array, dimension (14) The values computed by the fourteen tests described above. The values are currently limited to 1/ulp, to avoid overflow. Modified. INFO - INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -6: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -14: LDU < 1 or LDU < NMAX. -28: NWORK too small. If DLATMR, SLATMS, or SLATME returns an error code, the absolute value of it is returned. If 1, then DHSEQR could not find all the shifts. If 2, then the EISPACK code (for small blocks) failed. If >2, then 30*N iterations were not enough to find an eigenvalue or to decompose the problem. Modified. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. MTEST The number of tests defined: care must be taken that (1) the size of RESULT, (2) the number of tests actually performed, and (3) MTEST agree. NTEST The number of tests performed on this matrix so far. This should be less than MTEST, and equal to it by the last test. It will be less if any of the routines being tested indicates that it could not compute the matrices that would be tested. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far (computed by DLAFTS). COND, CONDS, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL, RTULP, RTULPI Square roots of the previous 4 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) KCONDS(j) Selects whether CONDS is to be 1 or 1/sqrt(ulp). (0 means irrelevant.) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; t2_dim1 = *lda; t2_offset = 1 + t2_dim1; t2 -= t2_offset; t1_dim1 = *lda; t1_offset = 1 + t1_dim1; t1 -= t1_offset; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; uu_dim1 = *ldu; uu_offset = 1 + uu_dim1; uu -= uu_offset; evectx_dim1 = *ldu; evectx_offset = 1 + evectx_dim1; evectx -= evectx_offset; evecty_dim1 = *ldu; evecty_offset = 1 + evecty_dim1; evecty -= evecty_offset; evectr_dim1 = *ldu; evectr_offset = 1 + evectr_dim1; evectr -= evectr_offset; evectl_dim1 = *ldu; evectl_offset = 1 + evectl_dim1; evectl -= evectl_offset; uz_dim1 = *ldu; uz_offset = 1 + uz_dim1; uz -= uz_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --wr1; --wi1; --wr3; --wi3; --tau; --work; --iwork; --select; --result; /* Function Body Check for errors */ ntestt = 0; *info = 0; badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.) { *info = -6; } else if (*lda <= 1 || *lda < nmax) { *info = -9; } else if (*ldu <= 1 || *ldu < nmax) { *info = -14; } else if ((nmax << 2) * nmax + 2 > *nwork) { *info = -28; } if (*info != 0) { i__1 = -(*info); xerbla_("DCHKHS", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More important constants */ unfl = dlamch_("Safe minimum"); ovfl = dlamch_("Overflow"); dlabad_(&unfl, &ovfl); ulp = dlamch_("Epsilon") * dlamch_("Base"); ulpinv = 1. / ulp; rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); rtulp = sqrt(ulp); rtulpi = 1. / rtulp; /* Loop over sizes, types */ nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (n == 0) { goto L270; } n1 = max(1,n); aninv = 1. / (doublereal) n1; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L260; } ++nmats; ntest = 0; /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Initialize RESULT */ for (j = 1; j <= 14; ++j) { result[j] = 0.; /* L30: */ } /* Compute "A" Control parameters: KMAGN KCONDS KMODE KTYPE =1 O(1) 1 clustered 1 zero =2 large large clustered 2 identity =3 small exponential Jordan =4 arithmetic diagonal, (w/ eigenvalues) =5 random log symmetric, w/ eigenvalues =6 random general, w/ eigenvalues =7 random diagonal =8 random symmetric =9 random general =10 random triangular */ if (mtypes > 21) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * aninv; goto L70; L60: anorm = rtunfl * n * ulpinv; goto L70; L70: dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices */ if (itype == 1) { /* Zero */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; /* L80: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; if (jcol > 1) { a[jcol + (jcol - 1) * a_dim1] = 1.; } /* L90: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.; } *(unsigned char *)&adumma[0] = ' '; dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, & n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, & c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 10) { /* Triangular, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___36.ciunit = *nounit; s_wsfe(&io___36); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call DGEHRD to compute H and U, do tests. */ dlacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); ntest = 1; ilo = 1; ihi = n; i__3 = *nwork - n; dgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 1], &i__3, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___39.ciunit = *nounit; s_wsfe(&io___39); do_fio(&c__1, "DGEHRD", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } i__3 = n - 1; for (j = 1; j <= i__3; ++j) { uu[j + 1 + j * uu_dim1] = 0.; i__4 = n; for (i__ = j + 2; i__ <= i__4; ++i__) { u[i__ + j * u_dim1] = h__[i__ + j * h_dim1]; uu[i__ + j * uu_dim1] = h__[i__ + j * h_dim1]; h__[i__ + j * h_dim1] = 0.; /* L110: */ } /* L120: */ } i__3 = n - 1; dcopy_(&i__3, &work[1], &c__1, &tau[1], &c__1); i__3 = *nwork - n; dorghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1], &i__3, &iinfo); ntest = 2; dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, & u[u_offset], ldu, &work[1], nwork, &result[1]); /* Call DHSEQR to compute T1, T2 and Z, do tests. Eigenvalues only (WR3,WI3) */ dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda); ntest = 3; result[3] = ulpinv; dhseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr3[1], & wi3[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___41.ciunit = *nounit; s_wsfe(&io___41); do_fio(&c__1, "DHSEQR(E)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); if (iinfo <= n + 2) { *info = abs(iinfo); goto L250; } } /* Eigenvalues (WR1,WI1) and Full Schur Form (T2) */ dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda); dhseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr1[1], & wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0 && iinfo <= n + 2) { io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "DHSEQR(S)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } /* Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors (UZ) */ dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda); dlacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], lda); dhseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &wr1[1], & wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0 && iinfo <= n + 2) { io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, "DHSEQR(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } /* Compute Z = U' UZ */ dgemm_("T", "N", &n, &n, &n, &c_b32, &u[u_offset], ldu, &uz[ uz_offset], ldu, &c_b18, &z__[z_offset], ldu); ntest = 8; /* Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) and 4: | I - Z Z' | / ( n ulp ) */ dhst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, &z__[z_offset], ldu, &work[1], nwork, &result[3]); /* Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) and 6: | I - UZ (UZ)' | / ( n ulp ) */ dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, & uz[uz_offset], ldu, &work[1], nwork, &result[5]); /* Do Test 7: | T2 - T1 | / ( |T| n ulp ) */ dget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1] , &result[7]); /* Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */ temp1 = 0.; temp2 = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ d__5 = temp1, d__6 = (d__1 = wr1[j], abs(d__1)) + (d__2 = wi1[ j], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = wr3[j], abs(d__3)) + (d__4 = wi3[j], abs(d__4)); temp1 = max(d__5,d__6); /* Computing MAX */ d__3 = temp2, d__4 = (d__1 = wr1[j] - wr3[j], abs(d__1)) + ( d__2 = wr1[j] - wr3[j], abs(d__2)); temp2 = max(d__3,d__4); /* L130: */ } /* Computing MAX */ d__1 = unfl, d__2 = ulp * max(temp1,temp2); result[8] = temp2 / max(d__1,d__2); /* Compute the Left and Right Eigenvectors of T Compute the Right eigenvector Matrix: */ ntest = 9; result[9] = ulpinv; /* Select last max(N/4,1) real, max(N/4,1) complex eigenvectors */ nselc = 0; nselr = 0; j = n; L140: if (wi1[j] == 0.) { /* Computing MAX */ i__3 = n / 4; if (nselr < max(i__3,1)) { ++nselr; select[j] = TRUE_; } else { select[j] = FALSE_; } --j; } else { /* Computing MAX */ i__3 = n / 4; if (nselc < max(i__3,1)) { ++nselc; select[j] = TRUE_; select[j - 1] = FALSE_; } else { select[j] = FALSE_; select[j - 1] = FALSE_; } j += -2; } if (j > 0) { goto L140; } dtrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, dumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[1] , &iinfo); if (iinfo != 0) { io___50.ciunit = *nounit; s_wsfe(&io___50); do_fio(&c__1, "DTREVC(R,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } /* Test 9: | TR - RW | / ( |T| |R| ulp ) */ dget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[ evectr_offset], ldu, &wr1[1], &wi1[1], &work[1], dumma); result[9] = dumma[0]; if (dumma[1] > *thresh) { io___51.ciunit = *nounit; s_wsfe(&io___51); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "DTREVC", (ftnlen)6); do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute selected right eigenvectors and confirm that they agree with previous right eigenvectors */ dtrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, dumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[1] , &iinfo); if (iinfo != 0) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, "DTREVC(R,S)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } k = 1; match = TRUE_; i__3 = n; for (j = 1; j <= i__3; ++j) { if (select[j] && wi1[j] == 0.) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (evectr[jj + j * evectr_dim1] != evectl[jj + k * evectl_dim1]) { match = FALSE_; goto L180; } /* L150: */ } ++k; } else if (select[j] && wi1[j] != 0.) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (evectr[jj + j * evectr_dim1] != evectl[jj + k * evectl_dim1] || evectr[jj + (j + 1) * evectr_dim1] != evectl[jj + (k + 1) * evectl_dim1]) { match = FALSE_; goto L180; } /* L160: */ } k += 2; } /* L170: */ } L180: if (! match) { io___56.ciunit = *nounit; s_wsfe(&io___56); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "DTREVC", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute the Left eigenvector Matrix: */ ntest = 10; result[10] = ulpinv; dtrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, & evectl[evectl_offset], ldu, dumma, ldu, &n, &in, &work[1], &iinfo); if (iinfo != 0) { io___57.ciunit = *nounit; s_wsfe(&io___57); do_fio(&c__1, "DTREVC(L,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } /* Test 10: | LT - WL | / ( |T| |L| ulp ) */ dget22_("Trans", "N", "Conj", &n, &t1[t1_offset], lda, &evectl[ evectl_offset], ldu, &wr1[1], &wi1[1], &work[1], &dumma[2] ); result[10] = dumma[2]; if (dumma[3] > *thresh) { io___58.ciunit = *nounit; s_wsfe(&io___58); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "DTREVC", (ftnlen)6); do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(doublereal)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute selected left eigenvectors and confirm that they agree with previous left eigenvectors */ dtrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, & evectr[evectr_offset], ldu, dumma, ldu, &n, &in, &work[1], &iinfo); if (iinfo != 0) { io___59.ciunit = *nounit; s_wsfe(&io___59); do_fio(&c__1, "DTREVC(L,S)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L250; } k = 1; match = TRUE_; i__3 = n; for (j = 1; j <= i__3; ++j) { if (select[j] && wi1[j] == 0.) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (evectl[jj + j * evectl_dim1] != evectr[jj + k * evectr_dim1]) { match = FALSE_; goto L220; } /* L190: */ } ++k; } else if (select[j] && wi1[j] != 0.) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (evectl[jj + j * evectl_dim1] != evectr[jj + k * evectr_dim1] || evectl[jj + (j + 1) * evectl_dim1] != evectr[jj + (k + 1) * evectr_dim1]) { match = FALSE_; goto L220; } /* L200: */ } k += 2; } /* L210: */ } L220: if (! match) { io___60.ciunit = *nounit; s_wsfe(&io___60); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "DTREVC", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Call DHSEIN for Right eigenvectors of H, do test 11 */ ntest = 11; result[11] = ulpinv; i__3 = n; for (j = 1; j <= i__3; ++j) { select[j] = TRUE_; /* L230: */ } dhsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], lda, &wr3[1], &wi3[1], dumma, ldu, &evectx[evectx_offset], ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo); if (iinfo != 0) { io___61.ciunit = *nounit; s_wsfe(&io___61); do_fio(&c__1, "DHSEIN(R)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L250; } } else { /* Test 11: | HX - XW | / ( |H| |X| ulp ) (from inverse iteration) */ dget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[ evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], dumma); if (dumma[0] < ulpinv) { result[11] = dumma[0] * aninv; } if (dumma[1] > *thresh) { io___62.ciunit = *nounit; s_wsfe(&io___62); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "DHSEIN", (ftnlen)6); do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof( doublereal)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); } } /* Call DHSEIN for Left eigenvectors of H, do test 12 */ ntest = 12; result[12] = ulpinv; i__3 = n; for (j = 1; j <= i__3; ++j) { select[j] = TRUE_; /* L240: */ } dhsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], lda, &wr3[1], &wi3[1], &evecty[evecty_offset], ldu, dumma, ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo); if (iinfo != 0) { io___63.ciunit = *nounit; s_wsfe(&io___63); do_fio(&c__1, "DHSEIN(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L250; } } else { /* Test 12: | YH - WY | / ( |H| |Y| ulp ) (from inverse iteration) */ dget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[ evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], & dumma[2]); if (dumma[2] < ulpinv) { result[12] = dumma[2] * aninv; } if (dumma[3] > *thresh) { io___64.ciunit = *nounit; s_wsfe(&io___64); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "DHSEIN", (ftnlen)6); do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof( doublereal)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); } } /* Call DORMHR for Right eigenvectors of A, do test 13 */ ntest = 13; result[13] = ulpinv; dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset] , ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___65.ciunit = *nounit; s_wsfe(&io___65); do_fio(&c__1, "DORMHR(R)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L250; } } else { /* Test 13: | AX - XW | / ( |A| |X| ulp ) (from inverse iteration) */ dget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[ evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], dumma); if (dumma[0] < ulpinv) { result[13] = dumma[0] * aninv; } } /* Call DORMHR for Left eigenvectors of A, do test 14 */ ntest = 14; result[14] = ulpinv; dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset] , ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___66.ciunit = *nounit; s_wsfe(&io___66); do_fio(&c__1, "DORMHR(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L250; } } else { /* Test 14: | YA - WY | / ( |A| |Y| ulp ) (from inverse iteration) */ dget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[ evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], & dumma[2]); if (dumma[2] < ulpinv) { result[14] = dumma[2] * aninv; } } /* End of Loop -- Check for RESULT(j) > THRESH */ L250: ntestt += ntest; dlafts_("DHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, nounit, &nerrs); L260: ; } L270: ; } /* Summary */ dlasum_("DHS", nounit, &nerrs, &ntestt); return 0; /* End of DCHKHS */ } /* dchkhs_ */