#include "blaswrap.h" /* cget10.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static complex c_b9 = {-1.f,0.f}; /* Subroutine */ int cget10_(integer *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *work, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; real r__1, r__2; /* Local variables */ static integer j; static real eps, unfl, anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); static real wnorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *), scasum_( integer *, complex *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CGET10 compares two matrices A and B and computes the ratio RESULT = norm( A - B ) / ( norm(A) * M * EPS ) Arguments ========= M (input) INTEGER The number of rows of the matrices A and B. N (input) INTEGER The number of columns of the matrices A and B. A (input) COMPLEX array, dimension (LDA,N) The m by n matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input) COMPLEX array, dimension (LDB,N) The m by n matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,M). WORK (workspace) COMPLEX array, dimension (M) RWORK (workspace) COMPLEX array, dimension (M) RESULT (output) REAL RESULT = norm( A - B ) / ( norm(A) * M * EPS ) ===================================================================== Quick return if possible Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; --rwork; /* Function Body */ if (*m <= 0 || *n <= 0) { *result = 0.f; return 0; } unfl = slamch_("Safe minimum"); eps = slamch_("Precision"); wnorm = 0.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { ccopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); caxpy_(m, &c_b9, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); /* Computing MAX */ r__1 = wnorm, r__2 = scasum_(n, &work[1], &c__1); wnorm = dmax(r__1,r__2); /* L10: */ } /* Computing MAX */ r__1 = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); if (anorm > wnorm) { *result = wnorm / anorm / (*m * eps); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *m * anorm; *result = dmin(r__1,r__2) / anorm / (*m * eps); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*m); *result = dmin(r__1,r__2) / (*m * eps); } } return 0; /* End of CGET10 */ } /* cget10_ */