#include "blaswrap.h"
/* cdrvsx.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    integer selopt, seldim;
    logical selval[20];
    real selwr[20], selwi[20];
} sslct_;

#define sslct_1 sslct_

/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__0 = 0;
static integer c__4 = 4;
static integer c__6 = 6;
static real c_b39 = 1.f;
static integer c__1 = 1;
static real c_b49 = 0.f;
static integer c__2 = 2;
static logical c_false = FALSE_;
static integer c__3 = 3;
static logical c_true = TRUE_;
static integer c__22 = 22;

/* Subroutine */ int cdrvsx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *niunit, 
	integer *nounit, complex *a, integer *lda, complex *h__, complex *ht, 
	complex *w, complex *wt, complex *wtmp, complex *vs, integer *ldvs, 
	complex *vs1, real *result, complex *work, integer *lwork, real *
	rwork, logical *bwork, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9991[] = "(\002 CDRVSX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Complex Schur Form Decompositi"
	    "on Expert \002,\002Driver\002,/\002 Matrix types (see CDRVSX for"
	    " details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
	    "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
	    " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
	    "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
	    " (no sort) \002,/\002 4 = 0 if W are eigenvalues of T (no sort)"
	    ",\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T same no matter "
	    "if VS computed (no sort),\002,\002  1/ulp otherwise\002,/\002 6 "
	    "= 0 if W same no matter if VS computed (no sort)\002,\002,  1/ul"
	    "p otherwise\002)";
    static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
	    ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
	    "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
	    "( n ulp ) (sort) \002,/\002 10 = 0 if W are eigenvalues of T (so"
	    "rt),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if T same no mat"
	    "ter what else computed (sort),\002,\002  1/ulp otherwise\002,"
	    "/\002 12 = 0 if W same no matter what else computed \002,\002(so"
	    "rt), 1/ulp otherwise\002,/\002 13 = 0 if sorting succesful, 1/ul"
	    "p otherwise\002,/\002 14 = 0 if RCONDE same no matter what else "
	    "computed,\002,\002 1/ulp otherwise\002,/\002 15 = 0 if RCONDv sa"
	    "me no matter what else computed,\002,\002 1/ulp otherwise\002,"
	    "/\002 16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002,/"
	    "\002 17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
	    "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
	    "\002,g10.3)";
    static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
	    vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    static integer i__, j, n, iwk;
    static real ulp, cond;
    static integer jcol;
    static char path[3];
    static integer nmax;
    static real unfl, ovfl;
    static integer isrt;
    static logical badnn;
    extern /* Subroutine */ int cget24_(logical *, integer *, real *, integer 
	    *, integer *, integer *, complex *, integer *, complex *, complex 
	    *, complex *, complex *, complex *, complex *, integer *, complex 
	    *, real *, real *, integer *, integer *, integer *, real *, 
	    complex *, integer *, real *, logical *, integer *);
    static integer nfail, imode, iinfo;
    static real conds, anorm;
    static integer islct[20], nslct, jsize, nerrs, itype, jtype, ntest;
    static real rtulp;
    extern /* Subroutine */ int slabad_(real *, real *);
    static real rcdein;
    extern /* Subroutine */ int clatme_(integer *, char *, integer *, complex 
	    *, integer *, real *, complex *, char *, char *, char *, char *, 
	    real *, integer *, real *, integer *, integer *, real *, complex *
	    , integer *, complex *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    static integer idumma[1], ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_(
	    integer *, integer *, char *, integer *, char *, complex *, 
	    integer *, real *, complex *, char *, char *, complex *, integer *
	    , real *, complex *, integer *, real *, char *, integer *, 
	    integer *, integer *, real *, real *, char *, complex *, integer *
	    , integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, 
	    real *, integer *, real *, real *, integer *, integer *, char *, 
	    complex *, integer *, complex *, integer *);
    static real rcdvin;
    static integer ntestf;
    extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
	    *);
    static real ulpinv;
    static integer nnwork;
    static real rtulpi;
    static integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___31 = { 0, 0, 0, fmt_9991, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___47 = { 0, 0, 1, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___51 = { 0, 0, 0, 0, 0 };
    static cilist io___52 = { 0, 0, 0, 0, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };



/*  -- LAPACK test routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

       CDRVSX checks the nonsymmetric eigenvalue (Schur form) problem   
       expert driver CGEESX.   

       CDRVSX uses both test matrices generated randomly depending on   
       data supplied in the calling sequence, as well as on data   
       read from an input file and including precomputed condition   
       numbers to which it compares the ones it computes.   

       When CDRVSX is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified.  For each size ("n")   
       and each type of matrix, one matrix will be generated and used   
       to test the nonsymmetric eigenroutines.  For each matrix, 15   
       tests will be performed:   

       (1)     0 if T is in Schur form, 1/ulp otherwise   
              (no sorting of eigenvalues)   

       (2)     | A - VS T VS' | / ( n |A| ulp )   

         Here VS is the matrix of Schur eigenvectors, and T is in Schur   
         form  (no sorting of eigenvalues).   

       (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).   

       (4)     0     if W are eigenvalues of T   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (5)     0     if T(with VS) = T(without VS),   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (7)     0 if T is in Schur form, 1/ulp otherwise   
               (with sorting of eigenvalues)   

       (8)     | A - VS T VS' | / ( n |A| ulp )   

         Here VS is the matrix of Schur eigenvectors, and T is in Schur   
         form  (with sorting of eigenvalues).   

       (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).   

       (10)    0     if W are eigenvalues of T   
               1/ulp otherwise   
               If workspace sufficient, also compare W with and   
               without reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (11)    0     if T(with VS) = T(without VS),   
               1/ulp otherwise   
               If workspace sufficient, also compare T with and without   
               reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),   
               1/ulp otherwise   
               If workspace sufficient, also compare VS with and without   
               reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (13)    if sorting worked and SDIM is the number of   
               eigenvalues which were SELECTed   
               If workspace sufficient, also compare SDIM with and   
               without reciprocal condition numbers   

       (14)    if RCONDE the same no matter if VS and/or RCONDV computed   

       (15)    if RCONDV the same no matter if VS and/or RCONDE computed   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random complex angles.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random complex angles.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random complex angles.   

       (7)  Same as (4), but multiplied by a constant near   
            the overflow threshold   
       (8)  Same as (4), but multiplied by a constant near   
            the underflow threshold   

       (9)  A matrix of the form  U' T U, where U is unitary and   
            T has evenly spaced entries 1, ..., ULP with random   
            complex angles on the diagonal and random O(1) entries in   
            the upper triangle.   

       (10) A matrix of the form  U' T U, where U is unitary and   
            T has geometrically spaced entries 1, ..., ULP with random   
            complex angles on the diagonal and random O(1) entries in   
            the upper triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            complex angles on the diagonal and random O(1) entries in   
            the upper triangle.   

       (12) A matrix of the form  U' T U, where U is unitary and   
            T has complex eigenvalues randomly chosen from   
            ULP < |z| < 1   and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random complex angles on the diagonal and random O(1)   
            entries in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random complex angles on the diagonal   
            and random O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random complex angles on the diagonal and random O(1)   
            entries in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has complex eigenvalues randomly chosen   
            from ULP < |z| < 1 and random O(1) entries in the upper   
            triangle.   

       (17) Same as (16), but multiplied by a constant   
            near the overflow threshold   
       (18) Same as (16), but multiplied by a constant   
            near the underflow threshold   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
            If N is at least 4, all entries in first two rows and last   
            row, and first column and last two columns are zero.   
       (20) Same as (19), but multiplied by a constant   
            near the overflow threshold   
       (21) Same as (19), but multiplied by a constant   
            near the underflow threshold   

       In addition, an input file will be read from logical unit number   
       NIUNIT. The file contains matrices along with precomputed   
       eigenvalues and reciprocal condition numbers for the eigenvalue   
       average and right invariant subspace. For these matrices, in   
       addition to tests (1) to (15) we will compute the following two   
       tests:   

      (16)  |RCONDE - RCDEIN| / cond(RCONDE)   

         RCONDE is the reciprocal average eigenvalue condition number   
         computed by CGEESX and RCDEIN (the precomputed true value)   
         is supplied as input.  cond(RCONDE) is the condition number   
         of RCONDE, and takes errors in computing RCONDE into account,   
         so that the resulting quantity should be O(ULP). cond(RCONDE)   
         is essentially given by norm(A)/RCONDV.   

      (17)  |RCONDV - RCDVIN| / cond(RCONDV)   

         RCONDV is the reciprocal right invariant subspace condition   
         number computed by CGEESX and RCDVIN (the precomputed true   
         value) is supplied as input. cond(RCONDV) is the condition   
         number of RCONDV, and takes errors in computing RCONDV into   
         account, so that the resulting quantity should be O(ULP).   
         cond(RCONDV) is essentially given by norm(A)/RCONDE.   

    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  NSIZES must be at   
            least zero. If it is zero, no randomly generated matrices   
            are tested, but any test matrices read from NIUNIT will be   
            tested.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE. NTYPES must be at least   
            zero. If it is zero, no randomly generated test matrices   
            are tested, but and test matrices read from NIUNIT will be   
            tested. If it is MAXTYP+1 and NSIZES is 1, then an   
            additional type, MAXTYP+1 is defined, which is to use   
            whatever matrix is in A.  This is only useful if   
            DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to CDRVSX to continue the same random number   
            sequence.   

    THRESH  (input) REAL   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   

    NIUNIT  (input) INTEGER   
            The FORTRAN unit number for reading in the data file of   
            problems to solve.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns INFO not equal to 0.)   

    A       (workspace) COMPLEX array, dimension (LDA, max(NN))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.  On exit, A contains the last matrix actually used.   

    LDA     (input) INTEGER   
            The leading dimension of A, and H. LDA must be at   
            least 1 and at least max( NN ).   

    H       (workspace) COMPLEX array, dimension (LDA, max(NN))   
            Another copy of the test matrix A, modified by CGEESX.   

    HT      (workspace) COMPLEX array, dimension (LDA, max(NN))   
            Yet another copy of the test matrix A, modified by CGEESX.   

    W       (workspace) COMPLEX array, dimension (max(NN))   
            The computed eigenvalues of A.   

    WT      (workspace) COMPLEX array, dimension (max(NN))   
            Like W, this array contains the eigenvalues of A,   
            but those computed when CGEESX only computes a partial   
            eigendecomposition, i.e. not Schur vectors   

    WTMP    (workspace) COMPLEX array, dimension (max(NN))   
            More temporary storage for eigenvalues.   

    VS      (workspace) COMPLEX array, dimension (LDVS, max(NN))   
            VS holds the computed Schur vectors.   

    LDVS    (input) INTEGER   
            Leading dimension of VS. Must be at least max(1,max(NN)).   

    VS1     (workspace) COMPLEX array, dimension (LDVS, max(NN))   
            VS1 holds another copy of the computed Schur vectors.   

    RESULT  (output) REAL array, dimension (17)   
            The values computed by the 17 tests described above.   
            The values are currently limited to 1/ulp, to avoid overflow.   

    WORK    (workspace) COMPLEX array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            max(1,2*NN(j)**2) for all j.   

    RWORK   (workspace) REAL array, dimension (max(NN))   

    BWORK   (workspace) LOGICAL array, dimension (max(NN))   

    INFO    (output) INTEGER   
            If 0,  successful exit.   
              <0,  input parameter -INFO is incorrect   
              >0,  CLATMR, CLATMS, CLATME or CGET24 returned an error   
                   code and INFO is its absolute value   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   
       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       NMAX            Largest value in NN.   
       NERRS           The number of tests which have exceeded THRESH   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTULP, RTULPI   Square roots of the previous 4 values.   
               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selectw whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    ht_dim1 = *lda;
    ht_offset = 1 + ht_dim1;
    ht -= ht_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --wt;
    --wtmp;
    vs1_dim1 = *ldvs;
    vs1_offset = 1 + vs1_dim1;
    vs1 -= vs1_offset;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1;
    vs -= vs_offset;
    --result;
    --work;
    --rwork;
    --bwork;

    /* Function Body */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     8 is the largest dimension in the input file of precomputed   
       problems */

    nmax = 8;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*niunit <= 0) {
	*info = -7;
    } else if (*nounit <= 0) {
	*info = -8;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvs < 1 || *ldvs < nmax) {
	*info = -20;
    } else /* if(complicated condition) */ {
/* Computing MAX   
   Computing 2nd power */
	i__3 = nmax;
	i__1 = nmax * 3, i__2 = i__3 * i__3 << 1;
	if (max(i__1,i__2) > *lwork) {
	    *info = -24;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CDRVSX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L150;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L130;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.f;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.f;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.f;
		    if (jcol > 1) {
			i__4 = jcol + (jcol - 1) * a_dim1;
			a[i__4].r = 1.f, a[i__4].i = 0.f;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond,
			 &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[
			n + 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond,
			 &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1],
			 &iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
			" ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
			&anorm, &a[a_offset], lda, &work[(n << 1) + 1], &
			iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
			n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, &
			c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, idumma,
			 &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b39, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
			n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
			c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
			n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
			c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
			iinfo);
		if (n >= 4) {
		    claset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    claset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3]
			    , lda);
		    i__3 = n - 3;
		    claset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * 
			    a_dim1 + 3], lda);
		    claset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], 
			    lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
			n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &c__0, &
			c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___31.ciunit = *nounit;
		s_wsfe(&io___31);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 2; ++iwk) {
		if (iwk == 1) {
		    nnwork = n << 1;
		} else {
/* Computing MAX */
		    i__3 = n << 1, i__4 = n * (n + 1) / 2;
		    nnwork = max(i__3,i__4);
		}
		nnwork = max(nnwork,1);

		cget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[
			a_offset], lda, &h__[h_offset], &ht[ht_offset], &w[1],
			 &wt[1], &wtmp[1], &vs[vs_offset], ldvs, &vs1[
			vs1_offset], &rcdein, &rcdvin, &nslct, islct, &c__0, &
			result[1], &work[1], &nnwork, &rwork[1], &bwork[1], 
			info);

/*              Check for RESULT(j) > THRESH */

		ntest = 0;
		nfail = 0;
		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= 0.f) {
			++ntest;
		    }
		    if (result[j] >= *thresh) {
			++nfail;
		    }
/* L100: */
		}

		if (nfail > 0) {
		    ++ntestf;
		}
		if (ntestf == 1) {
		    io___40.ciunit = *nounit;
		    s_wsfe(&io___40);
		    do_fio(&c__1, path, (ftnlen)3);
		    e_wsfe();
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    e_wsfe();
		    io___42.ciunit = *nounit;
		    s_wsfe(&io___42);
		    e_wsfe();
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    e_wsfe();
		    io___44.ciunit = *nounit;
		    s_wsfe(&io___44);
		    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
		    e_wsfe();
		    io___45.ciunit = *nounit;
		    s_wsfe(&io___45);
		    e_wsfe();
		    ntestf = 2;
		}

		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= *thresh) {
			io___46.ciunit = *nounit;
			s_wsfe(&io___46);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real) );
			e_wsfe();
		    }
/* L110: */
		}

		nerrs += nfail;
		ntestt += ntest;

/* L120: */
	    }
L130:
	    ;
	}
/* L140: */
    }

L150:

/*     Read in data from file to check accuracy of condition estimation   
       Read input data until N=0 */

    jtype = 0;
L160:
    io___47.ciunit = *niunit;
    i__1 = s_rsle(&io___47);
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&isrt, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L200;
    }
    if (n == 0) {
	goto L200;
    }
    ++jtype;
    iseed[1] = jtype;
    io___49.ciunit = *niunit;
    s_rsle(&io___49);
    i__1 = nslct;
    for (i__ = 1; i__ <= i__1; ++i__) {
	do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof(integer))
		;
    }
    e_rsle();
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___51.ciunit = *niunit;
	s_rsle(&io___51);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__6, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
		    complex));
	}
	e_rsle();
/* L170: */
    }
    io___52.ciunit = *niunit;
    s_rsle(&io___52);
    do_lio(&c__4, &c__1, (char *)&rcdein, (ftnlen)sizeof(real));
    do_lio(&c__4, &c__1, (char *)&rcdvin, (ftnlen)sizeof(real));
    e_rsle();

    cget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda,
	     &h__[h_offset], &ht[ht_offset], &w[1], &wt[1], &wtmp[1], &vs[
	    vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, &nslct, 
	    islct, &isrt, &result[1], &work[1], lwork, &rwork[1], &bwork[1], 
	    info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= 0.f) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L180: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	e_wsfe();
	io___55.ciunit = *nounit;
	s_wsfe(&io___55);
	e_wsfe();
	io___56.ciunit = *nounit;
	s_wsfe(&io___56);
	e_wsfe();
	io___57.ciunit = *nounit;
	s_wsfe(&io___57);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
	e_wsfe();
	io___58.ciunit = *nounit;
	s_wsfe(&io___58);
	e_wsfe();
	ntestf = 2;
    }
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= *thresh) {
	    io___59.ciunit = *nounit;
	    s_wsfe(&io___59);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real));
	    e_wsfe();
	}
/* L190: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L160;
L200:

/*     Summary */

    slasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of CDRVSX */

} /* cdrvsx_ */