#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zsyr_(char *uplo, integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *a, integer *lda) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZSYR performs the symmetric rank 1 operation A := alpha*x*( x' ) + A, where alpha is a complex scalar, x is an n element vector and A is an n by n symmetric matrix. Arguments ========== UPLO (input) CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N (input) INTEGER On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA (input) COMPLEX*16 On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X (input) COMPLEX*16 array, dimension at least ( 1 + ( N - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the N- element vector x. Unchanged on exit. INCX (input) INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. A (input/output) COMPLEX*16 array, dimension ( LDA, N ) Before entry, with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry, with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA (input) INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, N ). Unchanged on exit. ===================================================================== Test the input parameters. Parameter adjustments */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2; /* Local variables */ static integer i__, j, ix, jx, kx, info; static doublecomplex temp; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); --x; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*lda < max(1,*n)) { info = 7; } if (info != 0) { xerbla_("ZSYR ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || alpha->r == 0. && alpha->i == 0.) { return 0; } /* Set the start point in X if the increment is not unity. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through the triangular part of A. */ if (lsame_(uplo, "U")) { /* Form A when A is stored in upper triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = j; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L10: */ } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = jx; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; ix = kx; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; ix += *incx; /* L30: */ } } jx += *incx; /* L40: */ } } } else { /* Form A when A is stored in lower triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = j; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; if (x[i__2].r != 0. || x[i__2].i != 0.) { i__2 = jx; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; temp.r = z__1.r, temp.i = z__1.i; ix = jx; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i = x[i__5].r * temp.i + x[i__5].i * temp.r; z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; ix += *incx; /* L70: */ } } jx += *incx; /* L80: */ } } } return 0; /* End of ZSYR */ } /* zsyr_ */