#include "blaswrap.h"
#include "f2c.h"
/* Subroutine */ int zptsv_(integer *n, integer *nrhs, doublereal *d__,
doublecomplex *e, doublecomplex *b, integer *ldb, integer *info)
{
/* -- LAPACK routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
ZPTSV computes the solution to a complex system of linear equations
A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**H, and the factored form of A is then
used to solve the system of equations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**H.
E (input/output) COMPLEX*16 array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**H factorization of
A. E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**H*D*U factorization of A.
B (input/output) COMPLEX*16 array, dimension (LDB,N)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the solution has not been
computed. The factorization has not been completed
unless i = N.
=====================================================================
Test the input parameters.
Parameter adjustments */
/* System generated locals */
integer b_dim1, b_offset, i__1;
/* Local variables */
extern /* Subroutine */ int xerbla_(char *, integer *), zpttrf_(
integer *, doublereal *, doublecomplex *, integer *), zpttrs_(
char *, integer *, integer *, doublereal *, doublecomplex *,
doublecomplex *, integer *, integer *);
--d__;
--e;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*nrhs < 0) {
*info = -2;
} else if (*ldb < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPTSV ", &i__1);
return 0;
}
/* Compute the L*D*L' (or U'*D*U) factorization of A. */
zpttrf_(n, &d__[1], &e[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
zpttrs_("Lower", n, nrhs, &d__[1], &e[1], &b[b_offset], ldb, info);
}
return 0;
/* End of ZPTSV */
} /* zptsv_ */