#include "blaswrap.h" /* zlarnv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Subroutine */ int zlarnv_(integer *idist, integer *iseed, integer *n, doublecomplex *x) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3; /* Builtin functions */ double log(doublereal), sqrt(doublereal); void z_exp(doublecomplex *, doublecomplex *); /* Local variables */ static integer i__; static doublereal u[128]; static integer il, iv; extern /* Subroutine */ int dlaruv_(integer *, integer *, doublereal *); /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLARNV returns a vector of n random complex numbers from a uniform or normal distribution. Arguments ========= IDIST (input) INTEGER Specifies the distribution of the random numbers: = 1: real and imaginary parts each uniform (0,1) = 2: real and imaginary parts each uniform (-1,1) = 3: real and imaginary parts each normal (0,1) = 4: uniformly distributed on the disc abs(z) < 1 = 5: uniformly distributed on the circle abs(z) = 1 ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated. N (input) INTEGER The number of random numbers to be generated. X (output) COMPLEX*16 array, dimension (N) The generated random numbers. Further Details =============== This routine calls the auxiliary routine DLARUV to generate random real numbers from a uniform (0,1) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution. ===================================================================== Parameter adjustments */ --x; --iseed; /* Function Body */ i__1 = *n; for (iv = 1; iv <= i__1; iv += 64) { /* Computing MIN */ i__2 = 64, i__3 = *n - iv + 1; il = min(i__2,i__3); /* Call DLARUV to generate 2*IL real numbers from a uniform (0,1) distribution (2*IL <= LV) */ i__2 = il << 1; dlaruv_(&iseed[1], &i__2, u); if (*idist == 1) { /* Copy generated numbers */ i__2 = il; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = iv + i__ - 1; i__4 = (i__ << 1) - 2; i__5 = (i__ << 1) - 1; z__1.r = u[i__4], z__1.i = u[i__5]; x[i__3].r = z__1.r, x[i__3].i = z__1.i; /* L10: */ } } else if (*idist == 2) { /* Convert generated numbers to uniform (-1,1) distribution */ i__2 = il; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = iv + i__ - 1; d__1 = u[(i__ << 1) - 2] * 2. - 1.; d__2 = u[(i__ << 1) - 1] * 2. - 1.; z__1.r = d__1, z__1.i = d__2; x[i__3].r = z__1.r, x[i__3].i = z__1.i; /* L20: */ } } else if (*idist == 3) { /* Convert generated numbers to normal (0,1) distribution */ i__2 = il; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = iv + i__ - 1; d__1 = sqrt(log(u[(i__ << 1) - 2]) * -2.); d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; x[i__3].r = z__1.r, x[i__3].i = z__1.i; /* L30: */ } } else if (*idist == 4) { /* Convert generated numbers to complex numbers uniformly distributed on the unit disk */ i__2 = il; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = iv + i__ - 1; d__1 = sqrt(u[(i__ << 1) - 2]); d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; z__3.r = 0., z__3.i = d__2; z_exp(&z__2, &z__3); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; x[i__3].r = z__1.r, x[i__3].i = z__1.i; /* L40: */ } } else if (*idist == 5) { /* Convert generated numbers to complex numbers uniformly distributed on the unit circle */ i__2 = il; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = iv + i__ - 1; d__1 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; z__2.r = 0., z__2.i = d__1; z_exp(&z__1, &z__2); x[i__3].r = z__1.r, x[i__3].i = z__1.i; /* L50: */ } } /* L60: */ } return 0; /* End of ZLARNV */ } /* zlarnv_ */