#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zhptri_(char *uplo, integer *n, doublecomplex *ap, integer *ipiv, doublecomplex *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZHPTRI computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHPTRF. WORK (workspace) COMPLEX*16 array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* System generated locals */ integer i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2; /* Builtin functions */ double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static doublereal d__; static integer j, k; static doublereal t, ak; static integer kc, kp, kx, kpc, npp; static doublereal akp1; static doublecomplex temp, akkp1; extern logical lsame_(char *, char *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static integer kstep; static logical upper; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhpmv_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zswap_( integer *, doublecomplex *, integer *, doublecomplex *, integer *) , xerbla_(char *, integer *); static integer kcnext; --work; --ipiv; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ kp = *n * (*n + 1) / 2; for (*info = *n; *info >= 1; --(*info)) { i__1 = kp; if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) { return 0; } kp -= *info; /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ kp = 1; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { i__2 = kp; if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) { return 0; } kp = kp + *n - *info + 1; /* L20: */ } } *info = 0; if (upper) { /* Compute inv(A) from the factorization A = U*D*U'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; kc = 1; L30: /* If K > N, exit from loop. */ if (k > *n) { goto L50; } kcnext = kc + k; if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = kc + k - 1; i__2 = kc + k - 1; d__1 = 1. / ap[i__2].r; ap[i__1].r = d__1, ap[i__1].i = 0.; /* Compute column K of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & ap[kc], &c__1); i__1 = kc + k - 1; i__2 = kc + k - 1; i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = z_abs(&ap[kcnext + k - 1]); i__1 = kc + k - 1; ak = ap[i__1].r / t; i__1 = kcnext + k; akp1 = ap[i__1].r / t; i__1 = kcnext + k - 1; z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t; akkp1.r = z__1.r, akkp1.i = z__1.i; d__ = t * (ak * akp1 - 1.); i__1 = kc + k - 1; d__1 = akp1 / d__; ap[i__1].r = d__1, ap[i__1].i = 0.; i__1 = kcnext + k; d__1 = ak / d__; ap[i__1].r = d__1, ap[i__1].i = 0.; i__1 = kcnext + k - 1; z__2.r = -akkp1.r, z__2.i = -akkp1.i; z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; /* Compute columns K and K+1 of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & ap[kc], &c__1); i__1 = kc + k - 1; i__2 = kc + k - 1; i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = kcnext + k - 1; i__2 = kcnext + k - 1; i__3 = k - 1; zdotc_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1); z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = k - 1; zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & ap[kcnext], &c__1); i__1 = kcnext + k; i__2 = kcnext + k; i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; } kstep = 2; kcnext = kcnext + k + 1; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the leading submatrix A(1:k+1,1:k+1) */ kpc = (kp - 1) * kp / 2 + 1; i__1 = kp - 1; zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1); kx = kpc + kp - 1; i__1 = k - 1; for (j = kp + 1; j <= i__1; ++j) { kx = kx + j - 1; d_cnjg(&z__1, &ap[kc + j - 1]); temp.r = z__1.r, temp.i = z__1.i; i__2 = kc + j - 1; d_cnjg(&z__1, &ap[kx]); ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; i__2 = kx; ap[i__2].r = temp.r, ap[i__2].i = temp.i; /* L40: */ } i__1 = kc + kp - 1; d_cnjg(&z__1, &ap[kc + kp - 1]); ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = kc + k - 1; temp.r = ap[i__1].r, temp.i = ap[i__1].i; i__1 = kc + k - 1; i__2 = kpc + kp - 1; ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; i__1 = kpc + kp - 1; ap[i__1].r = temp.r, ap[i__1].i = temp.i; if (kstep == 2) { i__1 = kc + k + k - 1; temp.r = ap[i__1].r, temp.i = ap[i__1].i; i__1 = kc + k + k - 1; i__2 = kc + k + kp - 1; ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; i__1 = kc + k + kp - 1; ap[i__1].r = temp.r, ap[i__1].i = temp.i; } } k += kstep; kc = kcnext; goto L30; L50: ; } else { /* Compute inv(A) from the factorization A = L*D*L'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ npp = *n * (*n + 1) / 2; k = *n; kc = npp; L60: /* If K < 1, exit from loop. */ if (k < 1) { goto L80; } kcnext = kc - (*n - k + 2); if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = kc; i__2 = kc; d__1 = 1. / ap[i__2].r; ap[i__1].r = d__1, ap[i__1].i = 0.; /* Compute column K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], & c__1, &c_b2, &ap[kc + 1], &c__1); i__1 = kc; i__2 = kc; i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = z_abs(&ap[kcnext + 1]); i__1 = kcnext; ak = ap[i__1].r / t; i__1 = kc; akp1 = ap[i__1].r / t; i__1 = kcnext + 1; z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t; akkp1.r = z__1.r, akkp1.i = z__1.i; d__ = t * (ak * akp1 - 1.); i__1 = kcnext; d__1 = akp1 / d__; ap[i__1].r = d__1, ap[i__1].i = 0.; i__1 = kc; d__1 = ak / d__; ap[i__1].r = d__1, ap[i__1].i = 0.; i__1 = kcnext + 1; z__2.r = -akkp1.r, z__2.i = -akkp1.i; z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; /* Compute columns K-1 and K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], & c__1, &c_b2, &ap[kc + 1], &c__1); i__1 = kc; i__2 = kc; i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = kcnext + 1; i__2 = kcnext + 1; i__3 = *n - k; zdotc_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], & c__1); z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = *n - k; zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], & c__1, &c_b2, &ap[kcnext + 2], &c__1); i__1 = kcnext; i__2 = kcnext; i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1); d__1 = z__2.r; z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; } kstep = 2; kcnext -= *n - k + 3; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the trailing submatrix A(k-1:n,k-1:n) */ kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1; if (kp < *n) { i__1 = *n - kp; zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], & c__1); } kx = kc + kp - k; i__1 = kp - 1; for (j = k + 1; j <= i__1; ++j) { kx = kx + *n - j + 1; d_cnjg(&z__1, &ap[kc + j - k]); temp.r = z__1.r, temp.i = z__1.i; i__2 = kc + j - k; d_cnjg(&z__1, &ap[kx]); ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; i__2 = kx; ap[i__2].r = temp.r, ap[i__2].i = temp.i; /* L70: */ } i__1 = kc + kp - k; d_cnjg(&z__1, &ap[kc + kp - k]); ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = kc; temp.r = ap[i__1].r, temp.i = ap[i__1].i; i__1 = kc; i__2 = kpc; ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; i__1 = kpc; ap[i__1].r = temp.r, ap[i__1].i = temp.i; if (kstep == 2) { i__1 = kc - *n + k - 1; temp.r = ap[i__1].r, temp.i = ap[i__1].i; i__1 = kc - *n + k - 1; i__2 = kc - *n + kp - 1; ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; i__1 = kc - *n + kp - 1; ap[i__1].r = temp.r, ap[i__1].i = temp.i; } } k -= kstep; kc = kcnext; goto L60; L80: ; } return 0; /* End of ZHPTRI */ } /* zhptri_ */