#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zgetri_(integer *n, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZGETRI computes the inverse of a matrix using the LU factorization computed by ZGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A). Arguments ========= N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the factors L and U from the factorization A = P*L*U as computed by ZGETRF. On exit, if INFO = 0, the inverse of the original matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from ZGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO=0, then WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimal performance LWORK >= N*NB, where NB is the optimal blocksize returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero; the matrix is singular and its inverse could not be computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1; /* Local variables */ static integer i__, j, jb, nb, jj, jp, nn, iws, nbmin; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ldwork, lwkopt; static logical lquery; extern /* Subroutine */ int ztrtri_(char *, char *, integer *, doublecomplex *, integer *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "ZGETRI", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); lwkopt = *n * nb; work[1].r = (doublereal) lwkopt, work[1].i = 0.; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*lda < max(1,*n)) { *info = -3; } else if (*lwork < max(1,*n) && ! lquery) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGETRI", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form inv(U). If INFO > 0 from ZTRTRI, then U is singular, and the inverse is not computed. */ ztrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info); if (*info > 0) { return 0; } nbmin = 2; ldwork = *n; if (nb > 1 && nb < *n) { /* Computing MAX */ i__1 = ldwork * nb; iws = max(i__1,1); if (*lwork < iws) { nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "ZGETRI", " ", n, &c_n1, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } else { iws = *n; } /* Solve the equation inv(A)*L = inv(U) for inv(A). */ if (nb < nbmin || nb >= *n) { /* Use unblocked code. */ for (j = *n; j >= 1; --j) { /* Copy current column of L to WORK and replace with zeros. */ i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__ + j * a_dim1; work[i__2].r = a[i__3].r, work[i__2].i = a[i__3].i; i__2 = i__ + j * a_dim1; a[i__2].r = 0., a[i__2].i = 0.; /* L10: */ } /* Compute current column of inv(A). */ if (j < *n) { i__1 = *n - j; z__1.r = -1., z__1.i = -0.; zgemv_("No transpose", n, &i__1, &z__1, &a[(j + 1) * a_dim1 + 1], lda, &work[j + 1], &c__1, &c_b2, &a[j * a_dim1 + 1], &c__1); } /* L20: */ } } else { /* Use blocked code. */ nn = (*n - 1) / nb * nb + 1; i__1 = -nb; for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) { /* Computing MIN */ i__2 = nb, i__3 = *n - j + 1; jb = min(i__2,i__3); /* Copy current block column of L to WORK and replace with zeros. */ i__2 = j + jb - 1; for (jj = j; jj <= i__2; ++jj) { i__3 = *n; for (i__ = jj + 1; i__ <= i__3; ++i__) { i__4 = i__ + (jj - j) * ldwork; i__5 = i__ + jj * a_dim1; work[i__4].r = a[i__5].r, work[i__4].i = a[i__5].i; i__4 = i__ + jj * a_dim1; a[i__4].r = 0., a[i__4].i = 0.; /* L30: */ } /* L40: */ } /* Compute current block column of inv(A). */ if (j + jb <= *n) { i__2 = *n - j - jb + 1; z__1.r = -1., z__1.i = -0.; zgemm_("No transpose", "No transpose", n, &jb, &i__2, &z__1, & a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &ldwork, &c_b2, &a[j * a_dim1 + 1], lda); } ztrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b2, & work[j], &ldwork, &a[j * a_dim1 + 1], lda); /* L50: */ } } /* Apply column interchanges. */ for (j = *n - 1; j >= 1; --j) { jp = ipiv[j]; if (jp != j) { zswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1); } /* L60: */ } work[1].r = (doublereal) iws, work[1].i = 0.; return 0; /* End of ZGETRI */ } /* zgetri_ */