#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zgebd2_(integer *m, integer *n, doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, doublecomplex *tauq, doublecomplex *taup, doublecomplex *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZGEBD2 reduces a complex general m by n matrix A to upper or lower real bidiagonal form B by a unitary transformation: Q' * A * P = B. If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. Arguments ========= M (input) INTEGER The number of rows in the matrix A. M >= 0. N (input) INTEGER The number of columns in the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, if m >= n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors; if m < n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). D (output) DOUBLE PRECISION array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i). E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) The off-diagonal elements of the bidiagonal matrix B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. TAUQ (output) COMPLEX*16 array dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix Q. See Further Details. TAUP (output) COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix P. See Further Details. WORK (workspace) COMPLEX*16 array, dimension (max(M,N)) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== The matrices Q and P are represented as products of elementary reflectors: If m >= n, Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, and v and u are complex vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, v and u are complex vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The contents of A on exit are illustrated by the following examples: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i). ===================================================================== Test the input parameters Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static integer i__; static doublecomplex alpha; extern /* Subroutine */ int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info < 0) { i__1 = -(*info); xerbla_("ZGEBD2", &i__1); return 0; } if (*m >= *n) { /* Reduce to upper bidiagonal form */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = i__ + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, & tauq[i__]); i__2 = i__; d__[i__2] = alpha.r; i__2 = i__ + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Apply H(i)' to A(i:m,i+1:n) from the left */ if (i__ < *n) { i__2 = *m - i__ + 1; i__3 = *n - i__; d_cnjg(&z__1, &tauq[i__]); zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); } i__2 = i__ + i__ * a_dim1; i__3 = i__; a[i__2].r = d__[i__3], a[i__2].i = 0.; if (i__ < *n) { /* Generate elementary reflector G(i) to annihilate A(i,i+2:n) */ i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = i__ + (i__ + 1) * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & taup[i__]); i__2 = i__; e[i__2] = alpha.r; i__2 = i__ + (i__ + 1) * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Apply G(i) to A(i+1:m,i+1:n) from the right */ i__2 = *m - i__; i__3 = *n - i__; zlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = i__ + (i__ + 1) * a_dim1; i__3 = i__; a[i__2].r = e[i__3], a[i__2].i = 0.; } else { i__2 = i__; taup[i__2].r = 0., taup[i__2].i = 0.; } /* L10: */ } } else { /* Reduce to lower bidiagonal form */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ i__2 = *n - i__ + 1; zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); i__2 = i__ + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; zlarfg_(&i__2, &alpha, &a[i__ + min(i__3,*n) * a_dim1], lda, & taup[i__]); i__2 = i__; d__[i__2] = alpha.r; i__2 = i__ + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Apply G(i) to A(i+1:m,i:n) from the right */ if (i__ < *m) { i__2 = *m - i__; i__3 = *n - i__ + 1; zlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, & taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); } i__2 = *n - i__ + 1; zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__; a[i__2].r = d__[i__3], a[i__2].i = 0.; if (i__ < *m) { /* Generate elementary reflector H(i) to annihilate A(i+2:m,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *m - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tauq[i__]); i__2 = i__; e[i__2] = alpha.r; i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Apply H(i)' to A(i+1:m,i+1:n) from the left */ i__2 = *m - i__; i__3 = *n - i__; d_cnjg(&z__1, &tauq[i__]); zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & c__1, &z__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, & work[1]); i__2 = i__ + 1 + i__ * a_dim1; i__3 = i__; a[i__2].r = e[i__3], a[i__2].i = 0.; } else { i__2 = i__; tauq[i__2].r = 0., tauq[i__2].i = 0.; } /* L20: */ } } return 0; /* End of ZGEBD2 */ } /* zgebd2_ */