#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int spbrfs_(char *uplo, integer *n, integer *kd, integer * nrhs, real *ab, integer *ldab, real *afb, integer *ldafb, real *b, integer *ldb, real *x, integer *ldx, real *ferr, real *berr, real * work, integer *iwork, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. Purpose ======= SPBRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and banded, and provides error bounds and backward error estimates for the solution. Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB (input) REAL array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. AFB (input) REAL array, dimension (LDAFB,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A as computed by SPBTRF, in the same storage format as A (see AB). LDAFB (input) INTEGER The leading dimension of the array AFB. LDAFB >= KD+1. B (input) REAL array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) REAL array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by SPBTRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) REAL array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters =================== ITMAX is the maximum number of steps of iterative refinement. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static real c_b12 = -1.f; static real c_b14 = 1.f; /* System generated locals */ integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; real r__1, r__2, r__3; /* Local variables */ static integer i__, j, k, l; static real s, xk; static integer nz; static real eps; static integer kase; static real safe1, safe2; extern logical lsame_(char *, char *); static integer isave[3], count; extern /* Subroutine */ int ssbmv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *, integer *), slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *); extern doublereal slamch_(char *); static real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); static real lstres; extern /* Subroutine */ int spbtrs_(char *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *); ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; afb_dim1 = *ldafb; afb_offset = 1 + afb_dim1; afb -= afb_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldafb < *kd + 1) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SPBRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.f; berr[j] = 0.f; /* L10: */ } return 0; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 Computing MIN */ i__1 = *n + 1, i__2 = (*kd << 1) + 2; nz = min(i__1,i__2); eps = slamch_("Epsilon"); safmin = slamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.f; L20: /* Loop until stopping criterion is satisfied. Compute residual R = B - A * X */ scopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); ssbmv_(uplo, n, kd, &c_b12, &ab[ab_offset], ldab, &x[j * x_dim1 + 1], &c__1, &c_b14, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. If the i-th component of the denominator is less than SAFE2, then SAFE1 is added to the i-th components of the numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1)); /* L30: */ } /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); l = *kd + 1 - k; /* Computing MAX */ i__3 = 1, i__4 = k - *kd; i__5 = k - 1; for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) { work[i__] += (r__1 = ab[l + i__ + k * ab_dim1], dabs(r__1) ) * xk; s += (r__1 = ab[l + i__ + k * ab_dim1], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L40: */ } work[k] = work[k] + (r__1 = ab[*kd + 1 + k * ab_dim1], dabs( r__1)) * xk + s; /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); work[k] += (r__1 = ab[k * ab_dim1 + 1], dabs(r__1)) * xk; l = 1 - k; /* Computing MIN */ i__3 = *n, i__4 = k + *kd; i__5 = min(i__3,i__4); for (i__ = k + 1; i__ <= i__5; ++i__) { work[i__] += (r__1 = ab[l + i__ + k * ab_dim1], dabs(r__1) ) * xk; s += (r__1 = ab[l + i__ + k * ab_dim1], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L60: */ } work[k] += s; /* L70: */ } } s = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ r__2 = s, r__3 = (r__1 = work[*n + i__], dabs(r__1)) / work[ i__]; s = dmax(r__2,r__3); } else { /* Computing MAX */ r__2 = s, r__3 = ((r__1 = work[*n + i__], dabs(r__1)) + safe1) / (work[i__] + safe1); s = dmax(r__2,r__3); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if 1) The residual BERR(J) is larger than machine epsilon, and 2) BERR(J) decreased by at least a factor of 2 during the last iteration, and 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) { /* Update solution and try again. */ spbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[*n + 1] , n, info); saxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) ; lstres = berr[j]; ++count; goto L20; } /* Bound error from formula norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(A))* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) where norm(Z) is the magnitude of the largest component of Z inv(A) is the inverse of A abs(Z) is the componentwise absolute value of the matrix or vector Z NZ is the maximum number of nonzeros in any row of A, plus 1 EPS is machine epsilon The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) is incremented by SAFE1 if the i-th component of abs(A)*abs(X) + abs(B) is less than SAFE2. Use SLACN2 to estimate the infinity-norm of the matrix inv(A) * diag(W), where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * work[i__]; } else { work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * work[i__] + safe1; } /* L90: */ } kase = 0; L100: slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(A'). */ spbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[*n + 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] *= work[i__]; /* L110: */ } } else if (kase == 2) { /* Multiply by inv(A)*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] *= work[i__]; /* L120: */ } spbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[*n + 1], n, info); } goto L100; } /* Normalize error. */ lstres = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], dabs(r__1)); lstres = dmax(r__2,r__3); /* L130: */ } if (lstres != 0.f) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of SPBRFS */ } /* spbrfs_ */