#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int sormhr_(char *side, char *trans, integer *m, integer *n, integer *ilo, integer *ihi, real *a, integer *lda, real *tau, real * c__, integer *ldc, real *work, integer *lwork, integer *info ) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SORMHR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of IHI-ILO elementary reflectors, as returned by SGEHRD: Q = H(ilo) H(ilo+1) . . . H(ihi-1). Arguments ========= SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. ILO (input) INTEGER IHI (input) INTEGER ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI = 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0. A (input) REAL array, dimension (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by SGEHRD. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. TAU (input) REAL array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD. C (input/output) REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2; char ch__1[2]; /* Builtin functions Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static integer i1, i2, nb, mi, nh, ni, nq, nw; static logical left; extern logical lsame_(char *, char *); static integer iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer lwkopt; static logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; left = lsame_(side, "L"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*ilo < 1 || *ilo > max(1,nq)) { *info = -5; } else if (*ihi < min(*ilo,nq) || *ihi > nq) { *info = -6; } else if (*lda < max(1,nq)) { *info = -8; } else if (*ldc < max(1,*m)) { *info = -11; } else if (*lwork < max(1,nw) && ! lquery) { *info = -13; } if (*info == 0) { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); nb = ilaenv_(&c__1, "SORMQR", ch__1, &nh, n, &nh, &c_n1, (ftnlen) 6, (ftnlen)2); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &nh, &nh, &c_n1, (ftnlen) 6, (ftnlen)2); } lwkopt = max(1,nw) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__2 = -(*info); xerbla_("SORMHR", &i__2); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || nh == 0) { work[1] = 1.f; return 0; } if (left) { mi = nh; ni = *n; i1 = *ilo + 1; i2 = 1; } else { mi = *m; ni = nh; i1 = 1; i2 = *ilo + 1; } sormqr_(side, trans, &mi, &ni, &nh, &a[*ilo + 1 + *ilo * a_dim1], lda, & tau[*ilo], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); work[1] = (real) lwkopt; return 0; /* End of SORMHR */ } /* sormhr_ */