#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int sorgl2_(integer *m, integer *n, integer *k, real *a, 
	integer *lda, real *tau, real *work, integer *info)
{
/*  -- LAPACK routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    SORGL2 generates an m by n real matrix Q with orthonormal rows,   
    which is defined as the first m rows of a product of k elementary   
    reflectors of order n   

          Q  =  H(k) . . . H(2) H(1)   

    as returned by SGELQF.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix Q. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix Q. N >= M.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines the   
            matrix Q. M >= K >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the i-th row must contain the vector which defines   
            the elementary reflector H(i), for i = 1,2,...,k, as returned   
            by SGELQF in the first k rows of its array argument A.   
            On exit, the m-by-n matrix Q.   

    LDA     (input) INTEGER   
            The first dimension of the array A. LDA >= max(1,M).   

    TAU     (input) REAL array, dimension (K)   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by SGELQF.   

    WORK    (workspace) REAL array, dimension (M)   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument has an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1;
    /* Local variables */
    static integer i__, j, l;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 
	    slarf_(char *, integer *, integer *, real *, integer *, real *, 
	    real *, integer *, real *), xerbla_(char *, integer *);

    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < *m) {
	*info = -2;
    } else if (*k < 0 || *k > *m) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SORGL2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m <= 0) {
	return 0;
    }

    if (*k < *m) {

/*        Initialise rows k+1:m to rows of the unit matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (l = *k + 1; l <= i__2; ++l) {
		a[l + j * a_dim1] = 0.f;
/* L10: */
	    }
	    if (j > *k && j <= *m) {
		a[j + j * a_dim1] = 1.f;
	    }
/* L20: */
	}
    }

    for (i__ = *k; i__ >= 1; --i__) {

/*        Apply H(i) to A(i:m,i:n) from the right */

	if (i__ < *n) {
	    if (i__ < *m) {
		a[i__ + i__ * a_dim1] = 1.f;
		i__1 = *m - i__;
		i__2 = *n - i__ + 1;
		slarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
			tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
	    }
	    i__1 = *n - i__;
	    r__1 = -tau[i__];
	    sscal_(&i__1, &r__1, &a[i__ + (i__ + 1) * a_dim1], lda);
	}
	a[i__ + i__ * a_dim1] = 1.f - tau[i__];

/*        Set A(i,1:i-1) to zero */

	i__1 = i__ - 1;
	for (l = 1; l <= i__1; ++l) {
	    a[i__ + l * a_dim1] = 0.f;
/* L30: */
	}
/* L40: */
    }
    return 0;

/*     End of SORGL2 */

} /* sorgl2_ */