#include "blaswrap.h" /* slasdq.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int slasdq_(char *uplo, integer *sqre, integer *n, integer * ncvt, integer *nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *u, integer *ldu, real *c__, integer *ldc, real * work, integer *info) { /* System generated locals */ integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2; /* Local variables */ static integer i__, j; static real r__, cs, sn; static integer np1, isub; static real smin; static integer sqre1; extern logical lsame_(char *, char *); extern /* Subroutine */ int slasr_(char *, char *, char *, integer *, integer *, real *, real *, real *, integer *); static integer iuplo; extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *), slartg_(real *, real *, real *, real *, real *); static logical rotate; extern /* Subroutine */ int sbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, real *, integer * , real *, integer *, real *, integer *); /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SLASDQ computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal D and offdiagonal E, accumulating the transformations if desired. Letting B denote the input bidiagonal matrix, the algorithm computes orthogonal matrices Q and P such that B = Q * S * P' (P' denotes the transpose of P). The singular values S are overwritten on D. The input matrix U is changed to U * Q if desired. The input matrix VT is changed to P' * VT if desired. The input matrix C is changed to Q' * C if desired. See "Computing Small Singular Values of Bidiagonal Matrices With Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, LAPACK Working Note #3, for a detailed description of the algorithm. Arguments ========= UPLO (input) CHARACTER*1 On entry, UPLO specifies whether the input bidiagonal matrix is upper or lower bidiagonal, and wether it is square are not. UPLO = 'U' or 'u' B is upper bidiagonal. UPLO = 'L' or 'l' B is lower bidiagonal. SQRE (input) INTEGER = 0: then the input matrix is N-by-N. = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and (N+1)-by-N if UPLU = 'L'. The bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE >= N columns. N (input) INTEGER On entry, N specifies the number of rows and columns in the matrix. N must be at least 0. NCVT (input) INTEGER On entry, NCVT specifies the number of columns of the matrix VT. NCVT must be at least 0. NRU (input) INTEGER On entry, NRU specifies the number of rows of the matrix U. NRU must be at least 0. NCC (input) INTEGER On entry, NCC specifies the number of columns of the matrix C. NCC must be at least 0. D (input/output) REAL array, dimension (N) On entry, D contains the diagonal entries of the bidiagonal matrix whose SVD is desired. On normal exit, D contains the singular values in ascending order. E (input/output) REAL array. dimension is (N-1) if SQRE = 0 and N if SQRE = 1. On entry, the entries of E contain the offdiagonal entries of the bidiagonal matrix whose SVD is desired. On normal exit, E will contain 0. If the algorithm does not converge, D and E will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input. VT (input/output) REAL array, dimension (LDVT, NCVT) On entry, contains a matrix which on exit has been premultiplied by P', dimension N-by-NCVT if SQRE = 0 and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). LDVT (input) INTEGER On entry, LDVT specifies the leading dimension of VT as declared in the calling (sub) program. LDVT must be at least 1. If NCVT is nonzero LDVT must also be at least N. U (input/output) REAL array, dimension (LDU, N) On entry, contains a matrix which on exit has been postmultiplied by Q, dimension NRU-by-N if SQRE = 0 and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). LDU (input) INTEGER On entry, LDU specifies the leading dimension of U as declared in the calling (sub) program. LDU must be at least max( 1, NRU ) . C (input/output) REAL array, dimension (LDC, NCC) On entry, contains an N-by-NCC matrix which on exit has been premultiplied by Q' dimension N-by-NCC if SQRE = 0 and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). LDC (input) INTEGER On entry, LDC specifies the leading dimension of C as declared in the calling (sub) program. LDC must be at least 1. If NCC is nonzero, LDC must also be at least N. WORK (workspace) REAL array, dimension (4*N) Workspace. Only referenced if one of NCVT, NRU, or NCC is nonzero, and if N is at least 2. INFO (output) INTEGER On exit, a value of 0 indicates a successful exit. If INFO < 0, argument number -INFO is illegal. If INFO > 0, the algorithm did not converge, and INFO specifies how many superdiagonals did not converge. Further Details =============== Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; --e; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; iuplo = 0; if (lsame_(uplo, "U")) { iuplo = 1; } if (lsame_(uplo, "L")) { iuplo = 2; } if (iuplo == 0) { *info = -1; } else if (*sqre < 0 || *sqre > 1) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ncvt < 0) { *info = -4; } else if (*nru < 0) { *info = -5; } else if (*ncc < 0) { *info = -6; } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) { *info = -10; } else if (*ldu < max(1,*nru)) { *info = -12; } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) { *info = -14; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASDQ", &i__1); return 0; } if (*n == 0) { return 0; } /* ROTATE is true if any singular vectors desired, false otherwise */ rotate = *ncvt > 0 || *nru > 0 || *ncc > 0; np1 = *n + 1; sqre1 = *sqre; /* If matrix non-square upper bidiagonal, rotate to be lower bidiagonal. The rotations are on the right. */ if (iuplo == 1 && sqre1 == 1) { i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { slartg_(&d__[i__], &e[i__], &cs, &sn, &r__); d__[i__] = r__; e[i__] = sn * d__[i__ + 1]; d__[i__ + 1] = cs * d__[i__ + 1]; if (rotate) { work[i__] = cs; work[*n + i__] = sn; } /* L10: */ } slartg_(&d__[*n], &e[*n], &cs, &sn, &r__); d__[*n] = r__; e[*n] = 0.f; if (rotate) { work[*n] = cs; work[*n + *n] = sn; } iuplo = 2; sqre1 = 0; /* Update singular vectors if desired. */ if (*ncvt > 0) { slasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[ vt_offset], ldvt); } } /* If matrix lower bidiagonal, rotate to be upper bidiagonal by applying Givens rotations on the left. */ if (iuplo == 2) { i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { slartg_(&d__[i__], &e[i__], &cs, &sn, &r__); d__[i__] = r__; e[i__] = sn * d__[i__ + 1]; d__[i__ + 1] = cs * d__[i__ + 1]; if (rotate) { work[i__] = cs; work[*n + i__] = sn; } /* L20: */ } /* If matrix (N+1)-by-N lower bidiagonal, one additional rotation is needed. */ if (sqre1 == 1) { slartg_(&d__[*n], &e[*n], &cs, &sn, &r__); d__[*n] = r__; if (rotate) { work[*n] = cs; work[*n + *n] = sn; } } /* Update singular vectors if desired. */ if (*nru > 0) { if (sqre1 == 0) { slasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[ u_offset], ldu); } else { slasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[ u_offset], ldu); } } if (*ncc > 0) { if (sqre1 == 0) { slasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[ c_offset], ldc); } else { slasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[ c_offset], ldc); } } } /* Call SBDSQR to compute the SVD of the reduced real N-by-N upper bidiagonal matrix. */ sbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[ u_offset], ldu, &c__[c_offset], ldc, &work[1], info); /* Sort the singular values into ascending order (insertion sort on singular values, but only one transposition per singular vector) */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Scan for smallest D(I). */ isub = i__; smin = d__[i__]; i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { if (d__[j] < smin) { isub = j; smin = d__[j]; } /* L30: */ } if (isub != i__) { /* Swap singular values and vectors. */ d__[isub] = d__[i__]; d__[i__] = smin; if (*ncvt > 0) { sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], ldvt); } if (*nru > 0) { sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1] , &c__1); } if (*ncc > 0) { sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc) ; } } /* L40: */ } return 0; /* End of SLASDQ */ } /* slasdq_ */