#include "blaswrap.h" /* slasda.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__0 = 0; static real c_b11 = 0.f; static real c_b12 = 1.f; static integer c__1 = 1; static integer c__2 = 2; /* Subroutine */ int slasda_(integer *icompq, integer *smlsiz, integer *n, integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *z__, real *poles, integer * givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum, real *c__, real *s, real *work, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1; static real beta; static integer idxq, nlvl; static real alpha; static integer inode, ndiml, ndimr, idxqi, itemp, sqrei; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slasd6_(integer *, integer *, integer *, integer *, real *, real *, real *, real *, real *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, real * , real *, real *, integer *, real *, real *, real *, integer *, integer *); static integer nwork1, nwork2; extern /* Subroutine */ int xerbla_(char *, integer *), slasdq_( char *, integer *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *, integer *, real *, integer *), slasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static integer smlszp; /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= Using a divide and conquer approach, SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes the singular values in the SVD B = U * S * VT. The orthogonal matrices U and VT are optionally computed in compact form. A related subroutine, SLASD0, computes the singular values and the singular vectors in explicit form. Arguments ========= ICOMPQ (input) INTEGER Specifies whether singular vectors are to be computed in compact form, as follows = 0: Compute singular values only. = 1: Compute singular vectors of upper bidiagonal matrix in compact form. SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D. SQRE (input) INTEGER Specifies the column dimension of the bidiagonal matrix. = 0: The bidiagonal matrix has column dimension M = N; = 1: The bidiagonal matrix has column dimension M = N + 1. D (input/output) REAL array, dimension ( N ) On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values. E (input) REAL array, dimension ( M-1 ) Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed. U (output) REAL array, dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (output) REAL array, dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (output) INTEGER array, dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th secular equation on the computation tree. DIFL (output) REAL array, dimension ( LDU, NLVL ), where NLVL = floor(log_2 (N/SMLSIZ))). DIFR (output) REAL array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(1:N, 2 * I ) contains the normalizing factors for the right singular vector matrix. See SLASD8 for details. Z (output) REAL array, dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the components of the deflation-adjusted updating row vector for subproblems on the I-th level. POLES (output) REAL array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and POLES(1, 2*I) contain the new and old singular values involved in the secular equations on the I-th level. GIVPTR (output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (output) INTEGER array, dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records permutations done on the I-th level of the computation tree. GIVNUM (output) REAL array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (output) REAL array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (output) REAL array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) REAL array, dimension (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). IWORK (workspace) INTEGER array, dimension (7*N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an singular value did not converge Further Details =============== Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; --e; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } else if (*ldu < *n + *sqre) { *info = -8; } else if (*ldgcol < *n) { *info = -17; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASDA", &i__1); return 0; } m = *n + *sqre; /* If the input matrix is too small, call SLASDQ to find the SVD. */ if (*n <= *smlsiz) { if (*icompq == 0) { slasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[ vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, & work[1], info); } else { slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset] , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info); } return 0; } /* Book-keeping and set up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; idxq = ndimr + *n; iwk = idxq + *n; ncc = 0; nru = 0; smlszp = *smlsiz + 1; vf = 1; vl = vf + m; nwork1 = vl + m; nwork2 = nwork1 + smlszp * smlszp; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* for the nodes on bottom level of the tree, solve their subproblems by SLASDQ. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nlp1 = nl + 1; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; idxqi = idxq + nlf - 2; vfi = vf + nlf - 1; vli = vl + nlf - 1; sqrei = 1; if (*icompq == 0) { slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp); slasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], & work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], &nl, &work[nwork2], info); itemp = nwork1 + nl * smlszp; scopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1); scopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1); } else { slaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu); slaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], ldu); slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], & vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + u_dim1], ldu, &work[nwork1], info); scopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1); scopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1) ; } if (*info != 0) { return 0; } i__2 = nl; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L10: */ } if (i__ == nd && *sqre == 0) { sqrei = 0; } else { sqrei = 1; } idxqi += nlp1; vfi += nlp1; vli += nlp1; nrp1 = nr + sqrei; if (*icompq == 0) { slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp); slasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], & work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], &nr, &work[nwork2], info); itemp = nwork1 + (nrp1 - 1) * smlszp; scopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1); scopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1); } else { slaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu); slaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], ldu); slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], & vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + u_dim1], ldu, &work[nwork1], info); scopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1); scopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1) ; } if (*info != 0) { return 0; } i__2 = nr; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L20: */ } /* L30: */ } /* Now conquer each subproblem bottom-up. */ j = pow_ii(&c__2, &nlvl); for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqrei = *sqre; } else { sqrei = 1; } vfi = vf + nlf - 1; vli = vl + nlf - 1; idxqi = idxq + nlf - 1; alpha = d__[ic]; beta = e[ic]; if (*icompq == 0) { slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm[ perm_offset], &givptr[1], &givcol[givcol_offset], ldgcol, &givnum[givnum_offset], ldu, &poles[ poles_offset], &difl[difl_offset], &difr[difr_offset], &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], &iwork[iwk], info); } else { --j; slasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], & difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], &s[j], &work[nwork1], &iwork[iwk], info); } if (*info != 0) { return 0; } /* L40: */ } /* L50: */ } return 0; /* End of SLASDA */ } /* slasda_ */