#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int slarrr_(integer *n, real *d__, real *e, integer *info) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= Perform tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues. Arguments ========= N (input) INTEGER The order of the matrix. N > 0. D (input) REAL array, dimension (N) The N diagonal elements of the tridiagonal matrix T. E (input/output) REAL array, dimension (N) On entry, the first (N-1) entries contain the subdiagonal elements of the tridiagonal matrix T; E(N) is set to ZERO. INFO (output) INTEGER INFO = 0(default) : the matrix warrants computations preserving relative accuracy. INFO = 1 : the matrix warrants computations guaranteeing only absolute accuracy. Further Details =============== Based on contributions by Beresford Parlett, University of California, Berkeley, USA Jim Demmel, University of California, Berkeley, USA Inderjit Dhillon, University of Texas, Austin, USA Osni Marques, LBNL/NERSC, USA Christof Voemel, University of California, Berkeley, USA ===================================================================== As a default, do NOT go for relative-accuracy preserving computations. Parameter adjustments */ /* System generated locals */ integer i__1; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer i__; static real eps, tmp, tmp2, rmin, offdig; extern doublereal slamch_(char *); static real safmin; static logical yesrel; static real smlnum, offdig2; --e; --d__; /* Function Body */ *info = 1; safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; rmin = sqrt(smlnum); /* Tests for relative accuracy Test for scaled diagonal dominance Scale the diagonal entries to one and check whether the sum of the off-diagonals is less than one The sdd relative error bounds have a 1/(1- 2*x) factor in them, x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative accuracy is promised. In the notation of the code fragment below, 1/(1 - (OFFDIG + OFFDIG2)) is the condition number. We don't think it is worth going into "sdd mode" unless the relative condition number is reasonable, not 1/macheps. The threshold should be compatible with other thresholds used in the code. We set OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 instead of the current OFFDIG + OFFDIG2 < 1 */ yesrel = TRUE_; offdig = 0.f; tmp = sqrt((dabs(d__[1]))); if (tmp < rmin) { yesrel = FALSE_; } if (! yesrel) { goto L11; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { tmp2 = sqrt((r__1 = d__[i__], dabs(r__1))); if (tmp2 < rmin) { yesrel = FALSE_; } if (! yesrel) { goto L11; } offdig2 = (r__1 = e[i__ - 1], dabs(r__1)) / (tmp * tmp2); if (offdig + offdig2 >= .999f) { yesrel = FALSE_; } if (! yesrel) { goto L11; } tmp = tmp2; offdig = offdig2; /* L10: */ } L11: if (yesrel) { *info = 0; return 0; } else { } /* *** MORE TO BE IMPLEMENTED *** Test if the lower bidiagonal matrix L from T = L D L^T (zero shift facto) is well conditioned Test if the upper bidiagonal matrix U from T = U D U^T (zero shift facto) is well conditioned. In this case, the matrix needs to be flipped and, at the end of the eigenvector computation, the flip needs to be applied to the computed eigenvectors (and the support) */ return 0; /* END OF SLARRR */ } /* slarrr_ */