#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int shseqr_(char *job, char *compz, integer *n, integer *ilo,
	 integer *ihi, real *h__, integer *ldh, real *wr, real *wi, real *z__, 	 integer *ldz, real *work, integer *lwork, integer *info  	)
{
/*  -- LAPACK driver routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   

       Purpose   
       =======   

       SHSEQR computes the eigenvalues of a Hessenberg matrix H   
       and, optionally, the matrices T and Z from the Schur decomposition   
       H = Z T Z**T, where T is an upper quasi-triangular matrix (the   
       Schur form), and Z is the orthogonal matrix of Schur vectors.   

       Optionally Z may be postmultiplied into an input orthogonal   
       matrix Q so that this routine can give the Schur factorization   
       of a matrix A which has been reduced to the Hessenberg form H   
       by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.   

       Arguments   
       =========   

       JOB   (input) CHARACTER*1   
             = 'E':  compute eigenvalues only;   
             = 'S':  compute eigenvalues and the Schur form T.   

       COMPZ (input) CHARACTER*1   
             = 'N':  no Schur vectors are computed;   
             = 'I':  Z is initialized to the unit matrix and the matrix Z   
                     of Schur vectors of H is returned;   
             = 'V':  Z must contain an orthogonal matrix Q on entry, and   
                     the product Q*Z is returned.   

       N     (input) INTEGER   
             The order of the matrix H.  N .GE. 0.   

       ILO   (input) INTEGER   
       IHI   (input) INTEGER   
             It is assumed that H is already upper triangular in rows   
             and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally   
             set by a previous call to SGEBAL, and then passed to SGEHRD   
             when the matrix output by SGEBAL is reduced to Hessenberg   
             form. Otherwise ILO and IHI should be set to 1 and N   
             respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.   
             If N = 0, then ILO = 1 and IHI = 0.   

       H     (input/output) REAL array, dimension (LDH,N)   
             On entry, the upper Hessenberg matrix H.   
             On exit, if INFO = 0 and JOB = 'S', then H contains the   
             upper quasi-triangular matrix T from the Schur decomposition   
             (the Schur form); 2-by-2 diagonal blocks (corresponding to   
             complex conjugate pairs of eigenvalues) are returned in   
             standard form, with H(i,i) = H(i+1,i+1) and   
             H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the   
             contents of H are unspecified on exit.  (The output value of   
             H when INFO.GT.0 is given under the description of INFO   
             below.)   

             Unlike earlier versions of SHSEQR, this subroutine may   
             explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1   
             or j = IHI+1, IHI+2, ... N.   

       LDH   (input) INTEGER   
             The leading dimension of the array H. LDH .GE. max(1,N).   

       WR    (output) REAL array, dimension (N)   
       WI    (output) REAL array, dimension (N)   
             The real and imaginary parts, respectively, of the computed   
             eigenvalues. If two eigenvalues are computed as a complex   
             conjugate pair, they are stored in consecutive elements of   
             WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and   
             WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in   
             the same order as on the diagonal of the Schur form returned   
             in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2   
             diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and   
             WI(i+1) = -WI(i).   

       Z     (input/output) REAL array, dimension (LDZ,N)   
             If COMPZ = 'N', Z is not referenced.   
             If COMPZ = 'I', on entry Z need not be set and on exit,   
             if INFO = 0, Z contains the orthogonal matrix Z of the Schur   
             vectors of H.  If COMPZ = 'V', on entry Z must contain an   
             N-by-N matrix Q, which is assumed to be equal to the unit   
             matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,   
             if INFO = 0, Z contains Q*Z.   
             Normally Q is the orthogonal matrix generated by SORGHR   
             after the call to SGEHRD which formed the Hessenberg matrix   
             H. (The output value of Z when INFO.GT.0 is given under   
             the description of INFO below.)   

       LDZ   (input) INTEGER   
             The leading dimension of the array Z.  if COMPZ = 'I' or   
             COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.   

       WORK  (workspace/output) REAL array, dimension (LWORK)   
             On exit, if INFO = 0, WORK(1) returns an estimate of   
             the optimal value for LWORK.   

       LWORK (input) INTEGER   
             The dimension of the array WORK.  LWORK .GE. max(1,N)   
             is sufficient, but LWORK typically as large as 6*N may   
             be required for optimal performance.  A workspace query   
             to determine the optimal workspace size is recommended.   

             If LWORK = -1, then SHSEQR does a workspace query.   
             In this case, SHSEQR checks the input parameters and   
             estimates the optimal workspace size for the given   
             values of N, ILO and IHI.  The estimate is returned   
             in WORK(1).  No error message related to LWORK is   
             issued by XERBLA.  Neither H nor Z are accessed.   


       INFO  (output) INTEGER   
               =  0:  successful exit   
             .LT. 0:  if INFO = -i, the i-th argument had an illegal   
                      value   
             .GT. 0:  if INFO = i, SHSEQR failed to compute all of   
                  the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR   
                  and WI contain those eigenvalues which have been   
                  successfully computed.  (Failures are rare.)   

                  If INFO .GT. 0 and JOB = 'E', then on exit, the   
                  remaining unconverged eigenvalues are the eigen-   
                  values of the upper Hessenberg matrix rows and   
                  columns ILO through INFO of the final, output   
                  value of H.   

                  If INFO .GT. 0 and JOB   = 'S', then on exit   

             (*)  (initial value of H)*U  = U*(final value of H)   

                  where U is an orthogonal matrix.  The final   
                  value of H is upper Hessenberg and quasi-triangular   
                  in rows and columns INFO+1 through IHI.   

                  If INFO .GT. 0 and COMPZ = 'V', then on exit   

                    (final value of Z)  =  (initial value of Z)*U   

                  where U is the orthogonal matrix in (*) (regard-   
                  less of the value of JOB.)   

                  If INFO .GT. 0 and COMPZ = 'I', then on exit   
                        (final value of Z)  = U   
                  where U is the orthogonal matrix in (*) (regard-   
                  less of the value of JOB.)   

                  If INFO .GT. 0 and COMPZ = 'N', then Z is not   
                  accessed.   

       ================================================================   
               Default values supplied by   
               ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).   
               It is suggested that these defaults be adjusted in order   
               to attain best performance in each particular   
               computational environment.   

              ISPEC=1:  The SLAHQR vs SLAQR0 crossover point.   
                        Default: 75. (Must be at least 11.)   

              ISPEC=2:  Recommended deflation window size.   
                        This depends on ILO, IHI and NS.  NS is the   
                        number of simultaneous shifts returned   
                        by ILAENV(ISPEC=4).  (See ISPEC=4 below.)   
                        The default for (IHI-ILO+1).LE.500 is NS.   
                        The default for (IHI-ILO+1).GT.500 is 3*NS/2.   

              ISPEC=3:  Nibble crossover point. (See ILAENV for   
                        details.)  Default: 14% of deflation window   
                        size.   

              ISPEC=4:  Number of simultaneous shifts, NS, in   
                        a multi-shift QR iteration.   

                        If IHI-ILO+1 is ...   

                        greater than      ...but less    ... the   
                        or equal to ...      than        default is   

                             1               30          NS -   2(+)   
                            30               60          NS -   4(+)   
                            60              150          NS =  10(+)   
                           150              590          NS =  **   
                           590             3000          NS =  64   
                          3000             6000          NS = 128   
                          6000             infinity      NS = 256   

                    (+)  By default some or all matrices of this order   
                         are passed to the implicit double shift routine   
                         SLAHQR and NS is ignored.  See ISPEC=1 above   
                         and comments in IPARM for details.   

                         The asterisks (**) indicate an ad-hoc   
                         function of N increasing from 10 to 64.   

              ISPEC=5:  Select structured matrix multiply.   
                        (See ILAENV for details.) Default: 3.   

       ================================================================   
       Based on contributions by   
          Karen Braman and Ralph Byers, Department of Mathematics,   
          University of Kansas, USA   

       ================================================================   
       References:   
         K. Braman, R. Byers and R. Mathias, The Multi-Shift QR   
         Algorithm Part I: Maintaining Well Focused Shifts, and Level 3   
         Performance, SIAM Journal of Matrix Analysis, volume 23, pages   
         929--947, 2002.   

         K. Braman, R. Byers and R. Mathias, The Multi-Shift QR   
         Algorithm Part II: Aggressive Early Deflation, SIAM Journal   
         of Matrix Analysis, volume 23, pages 948--973, 2002.   

       ================================================================   

       ==== Matrices of order NTINY or smaller must be processed by   
       .    SLAHQR because of insufficient subdiagonal scratch space.   
       .    (This is a hard limit.) ====   

       ==== NL allocates some local workspace to help small matrices   
       .    through a rare SLAHQR failure.  NL .GT. NTINY = 11 is   
       .    required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-   
       .    mended.  (The default value of NMIN is 75.)  Using NL = 49   
       .    allows up to six simultaneous shifts and a 16-by-16   
       .    deflation window.  ====   


       ==== Decode and check the input parameters. ====   

       Parameter adjustments */
    /* Table of constant values */
    static real c_b11 = 0.f;
    static real c_b12 = 1.f;
    static integer c__1 = 1;
    static integer c__2 = 2;
    static integer c__49 = 49;
    
    /* System generated locals */
    address a__1[2];
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2[2], i__3;
    real r__1;
    char ch__1[2];
    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
    /* Local variables */
    static integer i__;
    static real hl[2401]	/* was [49][49] */;
    static integer kbot, nmin;
    extern logical lsame_(char *, char *);
    static logical initz;
    static real workl[49];
    static logical wantt, wantz;
    extern /* Subroutine */ int slaqr0_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , integer *, real *, integer *, real *, integer *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int slahqr_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , integer *, real *, integer *, integer *), slacpy_(char *, 
	    integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *);
    static logical lquery;


    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantt = lsame_(job, "S");
    initz = lsame_(compz, "I");
    wantz = initz || lsame_(compz, "V");
    work[1] = (real) max(1,*n);
    lquery = *lwork == -1;

    *info = 0;
    if (! lsame_(job, "E") && ! wantt) {
	*info = -1;
    } else if (! lsame_(compz, "N") && ! wantz) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
	*info = -4;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
	*info = -5;
    } else if (*ldh < max(1,*n)) {
	*info = -7;
    } else if (*ldz < 1 || wantz && *ldz < max(1,*n)) {
	*info = -11;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -13;
    }

    if (*info != 0) {

/*        ==== Quick return in case of invalid argument. ==== */

	i__1 = -(*info);
	xerbla_("SHSEQR", &i__1);
	return 0;

    } else if (*n == 0) {

/*        ==== Quick return in case N = 0; nothing to do. ==== */

	return 0;

    } else if (lquery) {

/*        ==== Quick return in case of a workspace query ==== */

	slaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
		1], ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
/*        ==== Ensure reported workspace size is backward-compatible with   
          .    previous LAPACK versions. ====   
   Computing MAX */
	r__1 = (real) max(1,*n);
	work[1] = dmax(r__1,work[1]);
	return 0;

    } else {

/*        ==== copy eigenvalues isolated by SGEBAL ==== */

	i__1 = *ilo - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    wr[i__] = h__[i__ + i__ * h_dim1];
	    wi[i__] = 0.f;
/* L10: */
	}
	i__1 = *n;
	for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
	    wr[i__] = h__[i__ + i__ * h_dim1];
	    wi[i__] = 0.f;
/* L20: */
	}

/*        ==== Initialize Z, if requested ==== */

	if (initz) {
	    slaset_("A", n, n, &c_b11, &c_b12, &z__[z_offset], ldz)
		    ;
	}

/*        ==== Quick return if possible ==== */

	if (*ilo == *ihi) {
	    wr[*ilo] = h__[*ilo + *ilo * h_dim1];
	    wi[*ilo] = 0.f;
	    return 0;
	}

/*        ==== SLAHQR/SLAQR0 crossover point ====   

   Writing concatenation */
	i__2[0] = 1, a__1[0] = job;
	i__2[1] = 1, a__1[1] = compz;
	s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
	nmin = ilaenv_(&c__1, "SHSEQR", ch__1, n, ilo, ihi, lwork, (ftnlen)6, 
		(ftnlen)2);
	nmin = max(11,nmin);

/*        ==== SLAQR0 for big matrices; SLAHQR for small ones ==== */

	if (*n > nmin) {
	    slaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], 
		    &wi[1], ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, 
		    info);
	} else {

/*           ==== Small matrix ==== */

	    slahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], 
		    &wi[1], ilo, ihi, &z__[z_offset], ldz, info);

	    if (*info > 0) {

/*              ==== A rare SLAHQR failure!  SLAQR0 sometimes succeeds   
                .    when SLAHQR fails. ==== */

		kbot = *info;

		if (*n >= 49) {

/*                 ==== Larger matrices have enough subdiagonal scratch   
                   .    space to call SLAQR0 directly. ==== */

		    slaqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset], 
			    ldh, &wr[1], &wi[1], ilo, ihi, &z__[z_offset], 
			    ldz, &work[1], lwork, info);

		} else {

/*                 ==== Tiny matrices don't have enough subdiagonal   
                   .    scratch space to benefit from SLAQR0.  Hence,   
                   .    tiny matrices must be copied into a larger   
                   .    array before calling SLAQR0. ==== */

		    slacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
		    hl[*n + 1 + *n * 49 - 50] = 0.f;
		    i__1 = 49 - *n;
		    slaset_("A", &c__49, &i__1, &c_b11, &c_b11, &hl[(*n + 1) *
			     49 - 49], &c__49);
		    slaqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
			    wr[1], &wi[1], ilo, ihi, &z__[z_offset], ldz, 
			    workl, &c__49, info);
		    if (wantt || *info != 0) {
			slacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
		    }
		}
	    }
	}

/*        ==== Clear out the trash, if necessary. ==== */

	if ((wantt || *info != 0) && *n > 2) {
	    i__1 = *n - 2;
	    i__3 = *n - 2;
	    slaset_("L", &i__1, &i__3, &c_b11, &c_b11, &h__[h_dim1 + 3], ldh);
	}

/*        ==== Ensure reported workspace size is backward-compatible with   
          .    previous LAPACK versions. ====   

   Computing MAX */
	r__1 = (real) max(1,*n);
	work[1] = dmax(r__1,work[1]);
    }

/*     ==== End of SHSEQR ==== */

    return 0;
} /* shseqr_ */