#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int sgesc2_(integer *n, real *a, integer *lda, real *rhs, integer *ipiv, integer *jpiv, real *scale) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SGESC2 solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by SGETC2. Arguments ========= N (input) INTEGER The order of the matrix A. A (input) REAL array, dimension (LDA,N) On entry, the LU part of the factorization of the n-by-n matrix A computed by SGETC2: A = P * L * U * Q LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1, N). RHS (input/output) REAL array, dimension (N). On entry, the right hand side vector b. On exit, the solution vector X. IPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j). SCALE (output) REAL On exit, SCALE contains the scale factor. SCALE is chosen 0 <= SCALE <= 1 to prevent owerflow in the solution. Further Details =============== Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. ===================================================================== Set constant to control owerflow Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real r__1, r__2; /* Local variables */ static integer i__, j; static real eps, temp; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), slabad_(real *, real *); extern doublereal slamch_(char *); static real bignum; extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int slaswp_(integer *, real *, integer *, integer *, integer *, integer *, integer *); static real smlnum; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --rhs; --ipiv; --jpiv; /* Function Body */ eps = slamch_("P"); smlnum = slamch_("S") / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Apply permutations IPIV to RHS */ i__1 = *n - 1; slaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L part */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { rhs[j] -= a[j + i__ * a_dim1] * rhs[i__]; /* L10: */ } /* L20: */ } /* Solve for U part */ *scale = 1.f; /* Check for scaling */ i__ = isamax_(n, &rhs[1], &c__1); if (smlnum * 2.f * (r__1 = rhs[i__], dabs(r__1)) > (r__2 = a[*n + *n * a_dim1], dabs(r__2))) { temp = .5f / (r__1 = rhs[i__], dabs(r__1)); sscal_(n, &temp, &rhs[1], &c__1); *scale *= temp; } for (i__ = *n; i__ >= 1; --i__) { temp = 1.f / a[i__ + i__ * a_dim1]; rhs[i__] *= temp; i__1 = *n; for (j = i__ + 1; j <= i__1; ++j) { rhs[i__] -= rhs[j] * (a[i__ + j * a_dim1] * temp); /* L30: */ } /* L40: */ } /* Apply permutations JPIV to the solution (RHS) */ i__1 = *n - 1; slaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1); return 0; /* End of SGESC2 */ } /* sgesc2_ */